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Abstract—Diffusion models have substantially advanced text-to-image
generation, achieving remarkable performance in creating high-quality
images from textual prompts. However, they often struggle with accurately
generating images representing spatial locations described or implied in
the prompts. To address this, we introduce SALT, a training-free method
leveraging semantic attention and layout guidance from Large Language
Models (LLMs) for text-to-image generation. This method effectively
guides both cross-attention and self-attention layers within diffusion
models, steering generation toward the direction of high-attention values
provided by the layout guidance. During the denoising process of the
diffusion model, image features in the latent space are iteratively refined
based on the loss function calculated from the desired attention maps.
Our approach has been executed on two benchmarks, providing detailed
qualitative examples and comprehensive quantitative analyses. Results
demonstrate that SALT outperforms existing training-free methods in
controlling object layouts and generating attributes.1

Index Terms—diffusion models, text-to-image generation, attention
mechanism, training-free method

I. INTRODUCTION

Recent advancements in Text-to-Image (T2I) generation models
based on diffusion techniques represent a significant stride in cross-
modal learning. Modern impactive generative diffusion models, (e.g.,
DALL-E [1], Imagen [6], and Stable Diffusion [8]), have unlocked
limitless possibilities for Artificial Intelligence Generated Content
(AIGC) processes. These models enable the synthesis of diverse and
realistic images with flexible editing capabilities. Despite the substan-
tial progress in T2I model development, they often have limitations in
following strictly textual descriptions, frequently exhibiting significant
hallucination issues. An obvious limitation of these models is their
inability to generate images that accurately depict the spatial locations.
This challenge predominantly arises from the limitations of the CLIP
[2] text encoder used in the diffusion models, which struggles to
interpret complex spatial descriptions.

Efforts in the field have recently concentrated on enhancing the
controllability of pre-trained diffusion models, particularly within
the Layout-to-Image (L2I) Generation. Researchers [15]–[17] have
proposed layout-conditioned diffusion models to tackle this challenge
by training or fine-tuning text-to-image diffusion models with addi-
tional network layers that provide spatial control, training adjustments,
and enriched datasets. [16] introduced LayoutDiffusion, treating each
image block as a distinct object within the layout and facilitating
the generation of high-quality and diverse images while enabling
precise control over the positioning and sizing of multiple objects.
[15] employs gated self-attention layers designed to add extra inputs,
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such as bounding boxes, enhancing spatial manipulation capabilities.
[17] incorporates regional tags into textual prompts, achieving layout
control through encoding the fixed prompts.

However, the process of training or fine-tuning can be computa-
tionally expensive. Moreover, models need to be retrained for each
new base model. In contrast, training-free methods have emerged
as an alternative, manipulating cross-attention layers to guide image
generation without additional training. These methods are typically
categorized into two types [14]: forward guidance, which directly
imposes the attention layers to align activations with the desired
patterns, and backward guidance, which adjusts latent variables
through gradient-based updates.

[11] extracts cross-attention maps for each text token and modifies
these values to control the generation of images. [13] introduces a
method to adjust cross-attention maps during the denoising period,
strengthening the attention to the selected tokens in the textual
prompts. [14] also manipulates the cross-attention layers, guiding
the reconstruction within the user-specified layout using two distinct
strategies. While these methods meticulously design the required
conditions to manipulate cross-attention maps, enhancing interactions
between textual and visual information, they often overlook the
manipulation of self-attention layers, which are crucial for handling
communication between different object features. Furthermore, the
aforementioned methods require the troublesome manual design
of certain conditions during implementation. Recently, research
leveraging LLMs [24]–[26] for layout generation has begun to emerge
[9], [10], which utilizes LLMs to infer spatial concepts under textual
conditions. [18] introduces a plug-and-play approach, which employs
attention refocusing to handle foreground and background regions.
The above method has already proven that adding layout guidance
during the attention map generation process is crucial for text-to-image
generation. While our technical approach is similar, in contrast, our
method focuses on directly enhancing the high-attention value regions
in both attention maps during each denoising step, achieving good
results in a straightforward way.

Building upon these findings, we propose an innovative method
that utilizes LLMs to generate bounding boxes as layout guidance for
objects mentioned in textual prompts. This method integrates attention-
guided optimization with layout guidance during the denoising process
in text-to-image generation. The combined approach ensures images
comply with spatial constraints while maintaining high visual fidelity.

In summary, the contributions of our paper are as follows:
• We introduce a novel training-free method that merges LLM-

generated bounding boxes with attention-guided optimization
in text-to-image generation without the manually designed
conditions.

• By manipulating both cross-attention and self-attention layers, we
direct heightened attention to specified areas, promoting objectsIC
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are generated and positioned as anticipated.
• Compared to other training-free methods that manipulate at-

tention, our approach achieves better generation results, as
demonstrated on the Drawbench and HRS datasets.

II. METHODOLOGY

A. Preliminaries

1) Diffusion Models: Diffusion models are a class of generative
models based on probabilistic principles, comprising both a forward
diffusion process and a reverse diffusion process. In text-to-image
generation, the reverse denoising process plays a pivotal role. The
model learns to progressively denoise the input by accurately pre-
dicting the noise added during the forward process. This iterative
denoising process is crucial to the effectiveness of diffusion models.

Stable Diffusion is a state-of-the-art image generation model based
on the diffusion framework. Unlike earlier models that manipulate
image data at the pixel level, it uses a pre-trained autoencoder to
operate within a compressed latent space, providing a more efficient
way to generate higher-quality images. The model is conditioned on
textual inputs, which are encoded by a pre-trained CLIP text encoder.
Given a conditioning prompt p, the corresponding conditioning vector
c(p) is integrated into the diffusion process.

The model’s training objective is to minimize the following loss
function: L = Ez∼E(x)

[
∥ϵt − ϵθ(zt, t, c(p))∥22

]
, where the encoder

E maps an image x into a latent space, producing the encoded latent
representation z. At each timestep t, noise of different levels is added
to z, resulting in the latent representation zt. The diffusion model
ϵθ , such as the U-Net architecture with a scheduler, is conditioned
on the text embedding c(p) to predict the noise added to zt, with θ
represents learnable parameters, while ϵt denotes the actual Gaussian
noise associated with zt.

2) Attention Layers: Attention layers [3], consisting of both
self-attention and cross-attention layers, are critical components of
the denoising U-Net architecture in Stable Diffusion, operating at
resolutions of 64, 32, 16, and 8. Self-attention layers facilitate the
utilization of global information, allowing for the synthesis of globally
coherent structures by linking disparate regions of an image. Cross-
attention layers serve as bridges between textual and image modalities,
typically employing a pre-trained CLIP encoder to process textual
prompts, resulting in text embedding features. Keys and values are
derived from text embedding features through linear mappings. The
attention matrix is defined as follows:

attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where Q and K represent the queries and keys within the attention
layer of the transformer block, while V denotes this layer’s value, dk
serves as a scaling factor for the dimension of the key.

B. LLM-based Layout Generation

LLMs exhibit advanced spatial reasoning capabilities, enabling them
to accurately model the spatial positions of objects. We instruct the
LLM to generate bounding boxes to provide essential spatial structure
and layout guidance for text-to-image generation, as depicted in Figure
2. The process is divided into three primary steps: (1) Generating
bounding boxes with coordinates formatted as (x1, y1, x2, y2), where
the x and y dimensions are normalized to the [0, 1] range; (2)
Associating each bounding box with a specific object mentioned
in the text prompt; (3) Supplying the LLM with a manually curated
example for generating layouts by employing in-context learning [23].

C. Semantic Attention and Layout Guidance

As seen in Figure 1, self-attention maps highlight areas of similar
color or texture, capturing intrinsic relationships between regions of
the image. In contrast, cross-attention maps serve to link specific
regions of the image to tokens from the text prompt. Together, the
two attention mechanisms, cross-attention, which guides the alignment
between image and text, and self-attention, which focuses on intra-
image coherence collaboratively contribute to the production of high-
quality images that are both semantically rich and visually coherent.
During the reverse diffusion process, we apply layout control as soft
constraints, guiding the attention mechanism to focus more on regions
within the bounding boxes during the gradient update step.

1) Semantic Attention Map Aggeration: The pre-trained CLIP
text encoder is utilized to process text. It tokenizes the prompt
into a sequence of tokens and transforms these tokens into a set
of embeddings: E = {e1, e2, ..., eN} where E ∈ RN×M , where
M is the embedding dimension, with special tokens ⟨sot⟩ and
⟨eot⟩ used to mark the start and end of the text, respectively.
Each bounding box Bj associated with the phrase is defined as
Bj = (x1j , y1j , x2j , y2j), where the coordinates specify the left-top,
and right-bottom boundaries of the j-th box. These boxes correspond
to phrases P = (p1, p2, ..., pj) that describe the objects within. During
the diffusion process, we utilize the U-Net that incorporates attention
maps at a resolution of 16× 16× S, as these maps of this resolution
have been shown to contain the most semantic information [11], [13].
Here, S represents the length of text tokens in the cross-attention map
and the depth of feature maps in the self-attention map. We aggregate
the attention from different layers and heads at the specified resolution
to obtain the aggregated cross-attention maps across and self-attention
maps aself. We removed the ⟨sot⟩ and ⟨eot⟩ because they carried
rich semantic and layout information. For each bounding box Bj , we
define a mask Mbj to isolate attention within the designated region:

Mbj =

{
1, if (x1j , y1j , x2j , y2j) ∈ Bj ,

0, otherwise.
(2)

This mask is then applied to the aggregated attention map,
concentrating attention on the regions of interest. Subsequently, we
apply Gaussian smoothing to the attention map, as proposed by [13],
to ensure a uniform distribution of attention within the bounding
box and to smooth any abrupt transitions. This procedure is defined
as across = GaussianSmooth(aj

cross ⊙Mbj , σ) , where σ denotes the
standard deviation. The maximum value is extracted from the cross-
attention maps within each mask, with the complete set of maximum
attention values defined as Amax

cross = {amax
cross,1, a

max
cross,2, . . . , a

max
cross,j}

where j equals the number of target regions, representing the focus of
each token on specific regions during T2I cross-modal interactions.

Self-attention maps Aself represent the influence each pixel in
the image has on and receives from other pixels, thereby capturing
the internal relationships and structures within the image. Similar
to the process applied to cross-attention maps, we can compute
aself = GaussianSmooth(ak

self ⊙Mbj , σ). The complete set of maxi-
mum attention values is defined as Amax

self = {amax
self,1, a

max
self,2, . . . , a

max
self,k},

where k equals the number of target regions multiplied by the number
of pixels in the spatial dimension, indicating the model’s multi-level
focus on each target region under the self-attention mechanism.

2) Overall Loss: Once the final attention maps are obtained, the
latent space is iteratively refined during the reverse diffusion process.
At each step, the loss is computed using the maximum attention values
from both the cross-attention and self-attention layers.
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Fig. 1. Method Overview. We utilize LLMs to generate bounding boxes, extracting corresponding self-attention and cross-attention maps. During the inference
process, we optimize the latent at each timestep through backpropagation, updating the latent zt accordingly. The attention maps use brighter colors to signify
higher attention scores, effectively visualizing the focus of the model.

Fig. 2. The diagram of layout generation.

For the cross-attention maps, the maximum attention value for each
region, amax

cross,j , is used to define the first part of the loss function
Lcross, assuming an ideal maximum attention value of 1. Similarly,
for the self-attention maps corresponding to each bounding box, the
second part of the loss function Lself is defined based on the maximum
attention values, amax

self,k, under the same assumption.

Lcross = max
j

[
max(0, 1− amax

cross,j)
]

Lself = max
k

[
max(0, 1− amax

self,k)
] (3)

The overall loss is the sum of the cross-attention and self-attention
losses: Ltotal = Lcross + Lself .

3) Backward Gradient Update: After computing the total loss
Ltotal, we optimize the noise vector zt in the latent space at the
current timestep:

z′t ← zt − αt · ∇ztLtotal (4)

Here, αt represents the step size for gradient updates, and ∇
denotes the gradient operator. The updated latent variable z′t, along
with the necessary parameters, is then fed into the Stable Diffusion
model to compute the noise vector for the next denoising step, zt−1.
This process is iteratively repeated throughout the early stages of
the denoising process, from t = T down to Tend, guiding the model
to generate preliminary images that align accurately with the text
prompts. During this phase, the expected object locations are carefully
aligned with the bounding boxes.

Inadequate optimization during the early stage can result in unclear
attention maps and potential object loss. To mitigate this, specific
timesteps are selected for progressively refined gradient updates,
achieving a balance between image clarity and data coherence. Further
implementation details are provided in the experiment section. In the
later stages of the denoising process, attention maps are no longer
used to guide the model. Instead, the standard denoising steps of the
Stable Diffusion model are executed directly, allowing the preliminary
image to gradually regain detail while ensuring the primary object’s
position remains unchanged.

III. EXPERIMENT

A. Baselines and Settings

We compared our method against various training-free approaches
designed to control the generative path during inference. These include
MultiDiffusion [12], Attend-and-Excite [13], and Layout-Guidance
[14]. Additionally, we compared our method with GLIGEN [15],
which incorporates an additional gated self-attention layer trained
on extensive datasets to learn new localized conditions. We included
it in our experiments as it serves as an excellent benchmark for
spatially conditioned L2I tasks. We also evaluated our approach against
the Stable Diffusion model [8], trained on the LAION-5B dataset
[4]. Following the basic settings in [13], we optimize the step size
controlling the denoising process, with an additional scaling factor αt.
The iterative timesteps are set as {0, 10, 20}. Images were generated
using the official Stable Diffusion model in a 50-step denoising process,
with the maximum number of iterations for optimizing the loss set
at 20. A Gaussian filter, characterized by a kernel size of 3 and a
function fσ defining the standard deviation as σ = 0.5, was used to
smooth the attention maps.

B. Datasets and Metrics

To quantitatively assess our approach, we employed two established
benchmarks: DrawBench [6] and HRS [5], which include prompts with
carefully designed spatial relationships (e.g., above, below, left, right),
encompassing a diverse range of textual expressions related to spatial
positioning. The DrawBench dataset consists of 20 spatial prompts,
for which we manually created labels based on object relationships.
We also cleaned the HRS dataset, retaining 898 spatial relationship
prompts, each labelled with objects and their relative positions. We
used accuracy as the evaluation metric, considering generated images
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Fig. 3. Qualitative Comparison: In the textual prompts, green text denote objects, while red text highlights relationships. Methods without layout often omit
objects and mostly do not follow the spatial layout described in the text (first three columns). In contrast, methods with layout, such as GLIGEN [15], which
trains an additional gated self-attention layer, excel at capturing spatial attributes. Our method, however, does not involve training but uses attention and layout
guidance (last column). To select the best-generated results, each method generated three images using three random seeds, from which the best were chosen.

correct when the detected objects are accurate and satisfy the specified
spatial relationships. Following the HRS [5] protocol, we use the same
detection setup UniDet [27] to compute metrics for generated images.

C. Experimental Results and Analysis

The quantitative results are presented in Table I, since the exact
number of iterations is not specified in [18], we used three iterations
as the baseline for averaging. Additionally, we randomly selected a
diverse set of challenging spatial relationship prompts and manually
verified them. In the DrawBench benchmark, SALT achieved the
highest accuracy, scoring 55.00%, significantly outperforming other
methods, including the extensively trained GLIGEN [15]. Similarly,
in the HRS benchmark, our model achieved an accuracy of 18.11%,
surpassing all training-free baselines.

Figure 3 illustrates the disparities in performance between methods
with and without layout guidance. For instance, the Stable Diffusion
[8] models often misplace objects or fail to generate them following
the prompts. MultiDiffusion [12] and Attend and Excite [13] have
established multi-regional generation models and enhanced text token
cross-attention values respectively. While these methods show marked
improvements in object attribute clarity, they still struggle with or
incorrectly represent spatial relationships.

Methods incorporating layout guidance, such as GLIGEN [15],
which involves training additional gated self-attention layers. It treats
bounding boxes as hard constraints, requiring that objects remain
confined within the designated regions as a goal. However, our method
offers distinct advantages. First, it is training-free, using bounding
boxes as guides to enhance attention weights within the specified
areas without strictly confining object generation to these regions.
This provides greater flexibility in generation. Second, compared to
Layout-Guidance [14] that relies on manually designed object and
positional information, our model not only aligns more closely with
textual prompts but also implements a fully automated pipeline and
focuses on attention guidance. Based on our analysis, while some
objects may not be entirely within the bounding boxes, the majority

of high-attention values are typically concentrated within or near the
boxes. This enhances alignment with textual prompts and maintains
flexibility in image generation.

TABLE I
QUANTITATIVE EVALUATION ON THE DRAWBENCH AND HRS BENCHMARK.

THE RESULTS OF OTHER METHODS ARE FROM [18].

Method
DrawBench HRS

Accurancy(%) ↑

Stable Diffusion [8] 12.50 8.48

Attend-and-Excite [13] 20.50 9.98

Layout-Guidance [14] 36.50 16.47

MultiDiffusion [12] 38.00 14.27

GLIGEN [15] 48.00 30.74

SALT 55.00 18.11

IV. CONCLUSION

In this paper, we introduced SALT, a training-free approach
that leverages semantic attention and layout guidance from LLMs
to enhance text-to-image generation. Without requiring additional
training or fine-tuning, SALT enables users to create images that
align more effectively with their needs, reducing the reliance on
extensive prompt engineering. Our comparative analyses on benchmark
datasets demonstrate that SALT outperforms traditional methods
reliant on manually designed object indices and positional information,
showcasing its ability to generate images that closely match textual
prompts. However, the method has some limitations, such as the
performance on multi-object prompts remains suboptimal. We will
delve deeper into improving the model’s capabilities in handling more
complex T2I generation tasks, aiming to expand the applicability and
robustness of this method in future work.

Authorized licensed use limited to: East China Normal University. Downloaded on July 07,2025 at 08:58:43 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[3] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[4] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman,
M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman et al., “Laion-
5b: An open large-scale dataset for training next generation image-text
models,” Advances in Neural Information Processing Systems, vol. 35,
pp. 25 278–25 294, 2022.

[5] E. M. Bakr, P. Sun, X. Shen, F. F. Khan, L. E. Li, and M. Elhoseiny,
“Hrs-bench: Holistic, reliable and scalable benchmark for text-to-image
models,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 20 041–20 053.

[6] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,
K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans
et al., “Photorealistic text-to-image diffusion models with deep language
understanding,” Advances in neural information processing systems,
vol. 35, pp. 36 479–36 494, 2022.

[7] Y. Kim, J. Lee, J.-H. Kim, J.-W. Ha, and J.-Y. Zhu, “Dense text-to-image
generation with attention modulation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 7701–7711.

[8] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 10 684–10 695.

[9] W. Feng, W. Zhu, T.-j. Fu, V. Jampani, A. Akula, X. He, S. Basu, X. E.
Wang, and W. Y. Wang, “Layoutgpt: Compositional visual planning and
generation with large language models,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[10] L. Lian, B. Li, A. Yala, and T. Darrell, “Llm-grounded diffusion:
Enhancing prompt understanding of text-to-image diffusion models with
large language models,” arXiv preprint arXiv:2305.13655, 2023.

[11] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-
Or, “Prompt-to-prompt image editing with cross attention control.(2022),”
URL https://arxiv. org/abs/2208.01626, 2022.

[12] O. Bar-Tal, L. Yariv, Y. Lipman, and T. Dekel, “Multidiffusion: Fusing
diffusion paths for controlled image generation,” 2023.

[13] H. Chefer, Y. Alaluf, Y. Vinker, L. Wolf, and D. Cohen-Or, “Attend-and-
excite: Attention-based semantic guidance for text-to-image diffusion
models,” ACM Transactions on Graphics (TOG), vol. 42, no. 4, pp. 1–10,
2023.

[14] M. Chen, I. Laina, and A. Vedaldi, “Training-free layout control with
cross-attention guidance,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2024, pp. 5343–5353.

[15] Y. Li, H. Liu, Q. Wu, F. Mu, J. Yang, J. Gao, C. Li, and Y. J. Lee,
“Gligen: Open-set grounded text-to-image generation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 22 511–22 521.

[16] G. Zheng, X. Zhou, X. Li, Z. Qi, Y. Shan, and X. Li, “Layoutdiffusion:
Controllable diffusion model for layout-to-image generation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 22 490–22 499.

[17] Z. Yang, J. Wang, Z. Gan, L. Li, K. Lin, C. Wu, N. Duan, Z. Liu, C. Liu,
M. Zeng et al., “Reco: Region-controlled text-to-image generation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 14 246–14 255.

[18] Q. Phung, S. Ge, and J.-B. Huang, “Grounded text-to-image synthesis
with attention refocusing,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 7932–7942.

[19] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control
to text-to-image diffusion models,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 3836–3847.

[20] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, and Y. Shan, “T2i-
adapter: Learning adapters to dig out more controllable ability for text-
to-image diffusion models,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 5, 2024, pp. 4296–4304.

[21] S. Zhong, Z. Huang, W. Wen, J. Qin, and L. Lin, “Sur-adapter: Enhancing
text-to-image pre-trained diffusion models with large language models,”
in Proceedings of the 31st ACM International Conference on Multimedia,
2023, pp. 567–578.

[22] J. Xu, X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, and Y. Dong,
“Imagereward: Learning and evaluating human preferences for text-to-
image generation,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[23] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[24] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm:
Scaling language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1–113, 2023.

[25] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama:
open and efficient foundation language models. arxiv,” arXiv preprint
arXiv:2302.13971, 2023.

[26] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.
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