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Abstract

The interdisciplinary field of chemistry and artificial intel-
ligence (AI) is an active area of research aimed at acceler-
ating scientific discovery. Large language Models (LLMs)
have shown significant promise in biochemical tasks, espe-
cially the molecule caption translation, which aims to align
between molecules and natural language texts. However, ex-
isting works mainly focus on single molecules, while align-
ment between chemical reactions and natural language text
remains largely unexplored. Additionally, the description of
reactions is an essential part in biochemical patents and liter-
ature, and research on this aspect not only can help better un-
derstand chemical reactions but also promote research on au-
tomating chemical synthesis and retrosynthesis. In this work,
we propose ReactGPT, a framework aiming to bridge the gap
between chemical reaction and text. ReactGPT allows a new
task: reaction captioning, by adapting LLMs to learn reaction-
text alignment from context examples via In-Context Tun-
ing. Specifically, ReactGPT jointly leverages a Fingerprints-
based Reaction Retrieval module, a Domain-Specific Prompt
Design module, and a two-stage In-Context Tuning module.
We evaluate the effectiveness of ReactGPT on reaction cap-
tioning and experimental procedure prediction, both of these
tasks can reflect the understanding of chemical reactions.
Experimental results show that compared to previous mod-
els, ReactGPT exhibits competitive capabilities in resolving
chemical reactions and generating high-quality text with cor-
rect structure.

Introduction
With the prosperity of large language models(LLMS), ar-
tificial intelligence technology is increasingly applied in a
variety of fields(Wu et al. 2023; Xie et al. 2023; Dan et al.
2023; Ahn et al. 2024; Azerbayev et al. 2024; Rozière et al.
2024; Luo et al. 2024). Especially in the field of chemical
molecules, the development of large language models has fa-
cilitated a lot of meaningful work, as molecules can be rep-
resented as Simplified Molecular-Input Line-Entry System
(SMILES) strings (Weininger 1988; Weininger, Weininger,
and Weininger 1989), which can be comprehended and gen-
erated by LLMs in a similar manner to natural languages.
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Edwards et al. (2022) proposed the task of translation be-
tween molecules and natural language, and put forward
MolT5 to solve the task.

However, most of the previous work focused on
molecules and ignored chemical reactions, they focus solely
on the interaction between individual molecules and text
(Edwards, Zhai, and Ji 2021a; Edwards et al. 2022; Li et al.
2023; Lu et al. 2022; Li et al. 2024), lacking an engage-
ment with text from the perspective of chemical reactions.
Liu et al. (2024b) focuses on reaction-text modeling, propos-
ing the ReactXT method for pretraining large language mod-
els specifically for chemical reactions, and applying it to a
downstream task of experimental procedure prediction. Ad-
ditionally, the detailed description of chemical reactions is
an essential part in biochemical patents and scientific litera-
ture. Therefore, we are committed to bridging chemical re-
actions and natural language text by proposing a new task:
reaction captioning. As shown in Figure 1, the goal of reac-
tion captioning is to generate a text caption describing the re-
action process. Specifically, the description of a chemical re-
action is a detailed account of a series of chemical changes,
including the exact names of compounds, their molecular
weights, and molar amounts. Additionally, it includes spe-
cific information about the reaction conditions, such as tem-
perature range, pressure, and stirring. Moreover, the charac-
terization of the product is also an essential part of the reac-
tion description, typically encompassing spectroscopic data,
such as NMR and mass spectrometry. These standardized
descriptions are common practice in patents and scientific
literature, enabling other researchers to accurately replicate
the experimental results. Our proposed task would promote
research in the scientific field by enabling chemical domain
researchers to generate the experimental steps of a chemical
reaction and have a better understanding of chemical reac-
tions.

Though our proposed reaction-caption task is similar to
the molecular caption task in some aspects, we also face in-
herent significant challenges. First, the description of chem-
ical reactions is very long and complex, including many de-
tails of reactants and reaction conditions, so it is difficult to
generate an accurate description. Second, the same chemi-
cal reaction can be described in different ways, leading to a
situation where current evaluation metrics that rely on refer-
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To a solution of 2-amino-4-chloropyridine (0.50 g, 3.9 
mmol) in acetonitrile (20 ml) was added dropwise a 
solution of N-bromosuccinimide (0.730 g, 4.1 mmol) in 
acetonitrile (10 ml). The reaction mixture was stirred at 
room temperature for 16 h then concentrated in vacuo. 
The crude product was purified by chromatography on 
silica gel (hexane/ethyl acetate 6:4) to give the title 
compound as a white solid (0.65 g, 80%); 1H-NMR (250 
MHz, CDCl3) 6.63 (s, 1H) and 8.16 (s, 1H) (3-H, 6-H).

Reactant

MAKESOLUTION with 2-amino-4-chloropyridine (0.50 g, 
3.9 mmol) and acetonitrile (20 ml) ; 
MAKESOLUTION with N-bromosuccinimide (0.730 g, 4.1 
mmol) and acetonitrile (10 ml) ; 
STIR for 16 h at room temperature; 
CONCENTRATE ; 
YIELD title compound (0.65 g, 80%).

Reactant

Solvent

Product

Reaction Captioning

Experimental Procedure 
Prediction

Nc1cc(Cl)ccn1.O=C1CCC(=O)N1Br>CC#N>Nc1cc(Cl)c(Br)cn1

Figure 1: Illustration of Reaction Captioning and Experimental Procedure Prediction. The various elements are marked in
different colors. For Experimental Procedure Prediction, each sequence begins with an action, and each action is predefined by
Vaucher et al. (2021).

ence descriptions, such as BLEU (Papineni et al. 2002) and
ROUGE (Lin 2004), are insufficient for properly assessing
these tasks.

Motivated by the aforementioned factors and challenges,
we propose ReactGPT, a framework aiming to bridge the
gap between chemical reactions and natural language text
by adapting LLMs. The purpose of ReactGPT is to leverage
the domain knowledge from informative context examples
via In-Context Tuning. Moreover, similar chemical reactions
may share similar solvents, catalysts, or conditions, as indi-
cated by the overlaps among reaction captions. Therefore,
with ReactGPT, LLMs could leverage their inferential and
in-context learning abilities to more effectively comprehend
the correlation between chemical reactions and accompany-
ing text captions as derived from contextual examples, thus
delivering enhanced performance.

Specifically, ReactGPT includes the following compo-
nents. First, ReactGPT adopts a Fingerprints-based Reac-
tion Retrieval module, which can retrieve k similar reaction-
caption pairs as context instances under the guidance of
reaction similarity, that is, retrieval based on reaction fin-
gerprint similarity. Second, ReactGPT integrates a Domain-
Specific Prompt Design module, enabling strong prompt
engineering capability from LLMs. Third, a two-stage In-
Context Reaction Tuning is adopted to adapt the parameters
of LLMs. We first fine-tune our model on the constructed
prompts that contain contextual examples. Additionally, in-
spired by the paradigm of direct preference optimization
(DPO), we construct negative samples to form the prefer-
ence pair with the ground truth, applying the DPO algorithm
to let our model learn the reaction caption structure, which
is extremely important for the description of chemistry reac-
tion.

In summary, our main contributions are as follows:

• We propose a new task: chemical reaction captioning,
which needs to generate a description of the chemical re-
action process, including a detailed account of a series of
chemical changes.

• We propose ReactGPT, a framework that improves the
performance of LLMs in chemical reaction captioning
task. ReactGPT integrates three modules: Fingerprints-
based Reaction Retrieval, Domain-Specific Prompt De-
sign, and Two-stage In-Context Reaction Tuning.

• We conduct the experiments on two tasks: reaction cap-
tioning and experimental procedure prediction, and the
results show that our method achieves state-of-the-art
performances, which enables LLMs to better align be-
tween chemical reactions and texts.

Related Work
Large Language Models for Chemistry
The advent of large language models (LLMs) has unlocked
novel opportunities across the scientific domain, accompa-
nied by the creation of various new benchmarks (Lu et al.
2022; Chen et al. 2023). As an essential and challenging
part of scientific domains, research in the chemistry domain
is booming with the application of LLMs (Fang et al. 2023;
Tang et al. 2024; Liao et al. 2024). Specifically, ChemDFM
Zhao et al. (2024) proposes ChemDFM, which is considered
as the first large language model towards Chemical Gen-
eral Intelligence and is trained on 34B tokens from chem-
ical literature, textbooks, and instructions along with a va-
riety of data from general domain. ChemCrow (Bran et al.
2023) integrates multiple existing tools for chemistry with
LLMs to address a variety of downstream tasks. LLMs are
also utilized to enhance the performance of specific chem-
ical applications, such as drug editing (Liu et al. 2024a),
reaction prediction (Qian et al. 2023; Zhong et al. 2023),
and molecule-text translation (Edwards et al. 2022). More-
over, Guo et al. (2024) proposes MolTailer, which gener-
ates molecular representations for specific tasks via text
prompts. Most recently, Liu et al. (2024b) proposes Reac-
tXT, a method that explores reaction-text modeling, facili-
tating reaction-relevant tasks with a text interface and tex-
tual knowledge. Here we take one step further to propose a
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new task, reaction captioning, to better align between chem-
ical reactions and natural language, which can facilitate un-
derstanding of chemical reactions for domain-specific re-
searchers.

Molecule-Text Translating
Inspired by the image captioning task, Edwards, Zhai, and
Ji (2021b) proposed a new dataset, ChEBI-20, which con-
tains 33,010 pairs of molecules and captions describing the
molecular properties. After that, Edwards et al. (2022) pro-
posed two innovative tasks: molecule captioning and text-
guided de novo molecule generation. These tasks aim at
translating between molecular representations and natural
language texts. MolXPT (Liu et al. 2023c) pretrains a GPT
model by leveraging literature annotations of molecules,
which demonstrate better molecule-text alignment. Addi-
tionally, MolReGPT (Li et al. 2023) employs in-context
learning that enables LLMs to learn the molecule-caption
translation task from the context examples with a parameter-
free scheme. Most recently, ICMA (Li et al. 2024) pro-
poses the In-context Molecule Adaptation, which fine-tunes
LLMs with informative contextual examples for better align-
ment between molecular representations and texts. More-
over, Chen et al. (2024) incorporate LLMs for low-resource
molecule discovery, by proposing the first artificially-real
dataset for molecule-caption translating task.

In-Context Learning
Recently, in-context learning has emerged as a promising
approach to enhance the performance of large language
models (LLMs), including a few input-output examples in
the model’s context as a precedent (Dong et al. 2022). LLMs
can solve various tasks without updating any model’s param-
eters by utilizing the capability of ICL. GPT-3 has shown
this characteristic, since it can exhibit performance on un-
seen tasks that is comparable to that of fine-tuned models
with few shot examples as input prefix (Brown et al. 2020).
Moreover, an effective way to enhance the In-Context Learn-
ing (ICL) capabilities of pre-trained models is to fine-tune
them with the addition of some labeled context examples
before the target input. For instance, Chen et al. (2021) pro-
posed a method of in-context tuning, which meta-trains the
Language Model with a few examples to learn how to adapt
to new tasks.

Task Definition
Inspired by image captioning and molecule captioning (Ed-
wards et al. 2022), we propose a new task: chemical reaction
captioning. For any given chemical reaction, the purpose of
reaction captioning is to describe the chemical reaction pro-
cess and details. However, reaction captioning can be a little
more complicated than image captioning and molecule cap-
tioning, due to the description of the reaction includes quite
a few technical terms and details such as reaction conditions.
As shown in Figure 1, the description of chemical reaction at
least contains the stoichiometric amount of compounds (e.g.,
mass and molar amount), the action operation (e.g., solution,
stir, concentrated), the reaction condition (e.g., temperature,

time), the information of the product (e.g., yield, conversion
rate). A high-quality reaction text should at least contain the
following elements: (mi, ci, ri), i ∈ D, where mi represents
the compounds, ci represents the conditions, such as temper-
ature and time, ri represents the results of the reaction, such
as the yield and spectroscopic data of the products.

Generally speaking, molecules are represented as
SMILES strings (Weininger 1988; Weininger, Weininger,
and Weininger 1989), as it precisely translates molecules’
chemical structures into a text string of atomic symbols and
chemical bonds based on a set of rules. As for the input
of our task, a chemical reaction is formed by the SMILES
strings of the compounds. Specifically, the molecules within
the same class were separated by dots (“.”), while the reac-
tants, catalysts/solvents, and product lists were separated by
“>”.

Methodology
In this section, we introduce ReactGPT as a novel frame-
work to adapt LLMs to chemical reaction captioning. As
shown in Figure 2, ReactGPT consists of three components,
including Fingerprints-based Reaction Retrieval, Domain-
Specific Prompt Design and Two-stage In-Context Tuning.
Specifically, the Reaction Retrieval module first retrieves K
examples from the training dataset D by calculating the sim-
ilarity between the current query reaction and other reaction-
caption pairs. After that, the Domain-Specific Prompt De-
sign module aims to generate the domain-specific prompts
and concatenate them with the input chemistry reactions to
request responses from LLMs. Finally, the multi-stage In-
Context Tuning first fine-tunes LLMs to learn the reaction-
text alignment from the context examples, and then aligns
structure preference with the Direct Preference Optimization
(DPO) algorithm.

Fingerprints-based Reaction Retrieval
In order to make better use of the domain knowledge, we
propose the Fingerprints-based Reaction Retrieval module,
since there exists rich domain knowledge in a retrieval
database, this module will retrieve the similar reaction and
its corresponding description, and inject them into the text
prompt. Generally speaking, the effective amount of infor-
mation in context examples is closely related to the qual-
ity of retrieval. Thus, random examples may provide insuf-
ficient knowledge regarding the associations between reac-
tions and natural language, as they fail to provide useful
information for the detailed descriptions of reaction con-
ditions and specific operations. Specifically, if the retrieval
reactions are more similar to the current query chemical re-
action, they may show more overlap in their respective cap-
tions, which allows for better alignment between reaction
and texts. Therefore, we propose a retrieval method to select
the context examples, which can help complement the lack
of task-specific knowledge in LLMs.

In our tasks, ReactGPT adopts reaction fingerprints-
based retrieval, which could better refine the quality of re-
trieval. However, traditional chemical reaction fingerprints
are generated based on structural characteristics of chemi-
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Fingerprints-based Reaction Retrieval

Chemical Reaction

Nc1cc(Cl)ccn1.O=C1CCC(=O)N
1Br>CC#N>Nc1cc(Cl)c(Br)cn1

Input

Rxnfp

Reaction FingerPrints

React

…

Cap Score

React Cap Score

React Cap Score

React Cap Score

React Cap Score

Top-k results

Domain-Specific Prompt Design

You are an expert in the realm of chemistry. You 
need to generate a detailed example text 
illustrating the synthesis reaction of a compound. 
### Ensure the generated text includes: detailed 
reaction conditions (temperature, time, etc.), the 
specific steps of the reaction including any 
necessary stabilization phases or intermediate 
steps …

# Example 1

Task Description

Context Examples

# Example 2
       …

Input

Based on the information, generate a detailed 
example text illustrating the synthesis reaction for 
the following reaction: {Reaction Place Holder}.

Two-stage In-Context Tuning

Response

Structure
discriminator

y-

Structure Preference Pairs

y+

Outputs

# stage 2: Structure Preference Optimization

Final LLM

# stage 1: In-Context Reaction Tuning

Figure 2: Framework of ReactGPT. Generally, ReactGPT consists of three components, Fingerprints-based Reaction Retrieval,
Domain-Specific Prompt Design and Two-stage In-Context Tuning.

cal molecules and known chemical rules to produce fixed-
length bit vectors or binary strings, which may have limited
capabilities in understanding complex and unseen reactions
due to their constrained generalization ability. To address
this challenge, we apply pre-trained language models, such
as BERT (Devlin et al. 2018), to get reaction fingerprints.
Reaction fingerprints are vector encodings of chemical re-
actions, which not only capture features of the atoms and
functional groups involved in the reaction but also encode
their changes. Moreover, reaction fingerprints can be used
for various aspects, such as similarity searching, yield pre-
diction, and reaction classification. In ReactGPT, we adopt
Rxnfp (Schwaller et al. 2021) as the reaction encoder, which
is pre-trained and fine-tuned on 2.6 million reactions.

After that, we use cosine similarity to evaluate the similar-
ity between the current query reaction x and other reactions
xi in the training set D. Mathematically, the reaction simi-
larity ranking function can be represented as:

R(x) = argmax
{x1,...,xN}⊆D

N∑
i=1

cos(ex, exi
) (1)

where ex and exi
denotes the embeddings of the given reac-

tions, which is the reaction fingerprints.

Domain-Specific Prompt Design
ReactGPT is proposed to solve the challenging problem:
improving the generalization capability of fine-tuned LLM
for reaction captioning task. To address this problem, we
propose the Domain-Specific Prompt Design module, since
prompt design or prompt engineering (Liu et al. 2023a)
has been proven to be an effective way to generalize well-
trained LLMs to various NLP downstream tasks. Following
the standard instruction tuning protocol, the reaction instruc-
tion set can be generated by the following text prompt tem-
plate T = {P,C, I}, which consists of the following three
parts:

• P : Task Description aims to help LLMs identify the role
of experts in the chemical task and ensure that LLMs
clearly understand the specific task they are required to
complete by providing a thorough explanation of the
task’s content. Moreover, it contains essential explana-
tions to illustrate specific terms or concepts unique to the
task of reaction captioning.

• C: Context Examples provides several reaction-caption
pairs which are similar to the query reaction, retrieving
from the Fingerprints-based Reaction Retrieval module.
These context examples enable LLMs to utilize the infor-
mation in reaction-caption pairs to generate better results.

• I: Input contains not only the SMILES string of the
query reaction but also the IUPAC name of each com-
pound, hence LLMs could focus on learning details of
chemical reaction, such as conditions, action operation,
and yield.

Two-stage In-Context Tuning
In this part, we introduce our fine-tuned method to adapt
LLMs for reaction captioning task, which consists of two
stages: In-Context Tuning and Structure Preference Align-
ment.

In-Context Tuning Inspired by in-context learning, in-
context tuning optimizes pre-trained LMs with the few-shot
in-context learning objective (Brown et al. 2020; Chen et al.
2021; Li et al. 2024). LLMs are trained using in-context
tuning, where context examples are concatenated with the
input. ReactGPT first employs the Fingerprints-based Re-
action Retrieval to obtain the context examples C, which
contains k similar reaction-captioning pairs {(xi, yi)|1 ≤
i ≤ k} from the training set. If the context examples are
more similar to the current query chemical reaction, they
may show more overlap in their respective captions, thus
contributing the final prediction. For example, the reaction
conditions and operations of the same or similar reactants
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are similar. Given the prompt template T , it’s easy for us
to construct the In-Context Tuning set SD by applying T
on each query chemical reaction. Then, we fine-tune a pre-
trained LLM by optimizing the following training loss:

LICT (θ) =
∑

(x,y)∈SD

[− log fθ(y|x,C, P )] (2)

Here, LICT (θ) represents the overall loss. fθ is a pre-trained
LLM with parameter θ, and we initialize fθ as LLaMA3-8B-
Instruct1. ReactGPT enables LLMs to learn the alignment
between reactions and natural language in a more compre-
hensible way by learning the context examples and their cor-
responding associations.

Structure Preference Alignment Since the captions of
chemical reactions are typically lengthy and complex, it is
crucial for them to possess the necessary components. In this
stage, we optimize the structure preference of LLMs with
the DPO algorithm. Given a chemical reaction x, the output
y should at least contain the following elements: (m, c, r),
where m represents the compounds including reactants, cat-
alysts, solvents, and products; c represents the conditions,
which at least contains temperature and time, r represents
the results of the reaction, such as the yield and spectro-
scopic data of the products.

Direct Preference Optimization (DPO) is an offline pref-
erence optimization technique to align language models with
human preferences. First, we introduce a structure discrim-
inator to judge whether the caption satisfies the structure.
The structure discriminator is composed of a set of rules
that check if the generated text contains corresponding com-
pounds and conditions like ”heat,” ”cool,” and ”° C” as well
as terms like ”yield,” ”NMR,” and so on to ensure structural
requirements are met. Then, we consider the label captions
in the training set that pass the discriminator as positive sam-
ples yw. After that, for each selected reaction-caption pair
above, we produce negative samples using SFT LLM from
stage one, which has been performed by in-context tuning. If
the generated caption does not satisfy the structural require-
ments, we accept it as the negative sample yl. Therefore, we
construct the structure preference pairs (yw, yl) to apply the
DPO algorithm.

The standard DPO algorithm aims to increase the likeli-
hood of the positive example while reducing that of the neg-
ative example. Therefore, we optimize the structure prefer-
ence by applying the loss function as follows:

rw(θ) = β(log πθ(yw|x)− log πsft(yw|x)) (3)

rl(θ) = β(log πθ(yl|x)− log πsft(yl|x)) (4)

Lstructure(θ) = − log σ(rw(θ)− rl(θ)) (5)
where πθ is the language model to be optimized, πsft is the
SFT language model that has been In-Context Tuned in the
stage above, and β is the temperature hyperparameter. σ is
the sigmoid function, the difference between rw and rl is
considered the reward that needs to be optimized.

1https://github.com/meta-llama/llama3

Experiments
To evaluate the effectiveness of ReactGPT, we conduct com-
prehensive experiments comparing our proposed approaches
with existing methods on two tasks: reaction captioning and
experimental procedure prediction. After that, we include
ablation studies demonstrating the contributions of individ-
ual components.

Experimental Setting
Data We employ the OpenExp dataset (Liu et al. 2024b)
for fine-tuning and evaluation. It consists of 274,439 chem-
ical reactions with the corresponding captions and experi-
mental procedures, which have been filtered and processed
from chemical reaction databases of USPTO-Applications
(Lowe 2017) and ORD (Kearnes et al. 2021). For our evalu-
ation, we focus on the test split while using the training set
as the local database to retrieve k-shot context examples for
In-Context Tuning.

Evaluation Metrics To evaluate the understanding of
chemical reaction, we employ BLEU (Papineni et al. 2002),
ROUGE (Lin 2004), METEOR (Banerjee and Lavie 2005),
and the normalized Levenshtein similarity (Levenshtein
et al. 1966) for assessing the quality of generations. How-
ever, there are many non-overlapping ways to describe a re-
action, which makes these metrics less effective to a certain
extent. Therefore, we take the structure success of generated
texts into account. To measure the model’s ability of gener-
ating the correct structure of caption, we utilize the structure
success rate as one of the evaluation metrics.

Implementation Details The LLaMA3-8B-Instruct is ac-
quired from huggingface Transformers2. To efficiently fine-
tune the LLaMA3-8B-Instruct, we employ the LoRA ap-
proach. To enhance memory utilization and speed up the
training process, we incorporated Deepspeed ZeRO stage
2. The entire project is based on the LLaMA-Factory3. We
adopt AdamW optimizer, set the learning rate as 5e-5, batch
size as 4, and the maximum input length to 4096 tokens. The
temperature is set to 0.95, the top-p is set to 0.95 and the top-
k is set to 5 in the decoding strategy. All our experiments are
performed on 2 NVIDIA A100-80G.

Baselines Specifically, we select the following baselines
for performance evaluation.
• MolT5 (Edwards et al. 2022). MolT5 models are pre-

trained with MLM on molecule string representations
and natural language text, and then fine-tuned on down-
stream datasets.

• Galactica (Taylor et al. 2022). Galactica is a large lan-
guage model pre-trained on unstructured scientific cor-
pus, and the model has acquired molecular knowledge
since the pretraining stage.

• ChemDFM (Zhao et al. 2024). ChemDFM is pre-
trained and fine-tuned based on LLaMA2-13B, and it
is considered as the first large language model to-
wards Chemical General Intelligence. ChemDFM-13B
2https://github.com/huggingface/transformers
3https://github.com/hiyouga/LLaMA-Factory
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Methods BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Structure Succ.

Nearest Neighbor 43.19 29.91 48.77 23.12 36.80 41.99 38.53

MolT5-Base 40.64 30.39 50.82 27.44 40.53 44.12 70.77

MolT5-Large 41.05 31.15 53.19 27.65 41.39 44.32 73.21

GPT-4o-mini 31.59 21.36 44.28 19.48 30.44 42.97 37.82

Galactica 33.58 24.19 46.04 21.43 33.34 37.35 67.70

ChemDFM 45.08 33.05 52.00 26.93 40.52 44.23 83.23

LLaMA3 43.54 32.23 51.29 26.52 40.05 44.37 76.56

ReactGPT (ours) 48.12 36.41 53.92 28.88 42.23 47.54 89.53

Table 1: Results of different models for Reaction Captioning task(%). The best scores are marked in bold. For models larger
than 6B, we utilize the LoRA (Low-Rank Adaptation) method for low-rank fine-tuning to save running memory. For GPT-4o-
mini, we provide it with a context example to learn reaction-text alignment.

is trained on 34B tokens from chemical literature, text-
books, and instructions along with a variety of data from
general domain.

• ReactXT (Liu et al. 2024b). ReactXT employs
MolCA(Liu et al. 2023b) as the primary LM backbone,
which is based on Galactica-1.3B, integrating three types
of input contexts to incrementally pre-train an LM. These
contexts are tailored to improve LMs’ comprehension of
individual molecules and chemical reactions.

Reaction Captioning

Table 1 displays the comparison results between our model
and other baselines. For the Nearest Neighbor method, we
select the reaction text from the training set with the re-
action most similar to the query one. We can observe that
ReactGPT consistently outperforms all previous models and
achieves state-of-the-art across all metrics. Specifically, as
for the text generation metrics, ReactGPT shows improve-
ments of 4.18% BLEU-4 and 2.18% ROUGE-L scores com-
pared to LLaMA3-8B-Instruct with naive SFT, while the lat-
ter merely obtains a performance that is slightly better than
MolT5-base. Moreover, the surpassing performance com-
pared to the domain-specific large language models, such as
Galactica-6.7B and ChemDFM-13B, reveals that our frame-
work successfully improves the understanding of chemical
reactions and generates high-quality texts that better align
with reactions by enriching the context. In the aspect of
the structure success rate, we can observe that most of the
baselines perform poorly, though they learn the reaction-
text pairs during training, they lack training specifically
for the structure of the reaction text, which may result in
the text lacking the necessary information. To address this
challenge, our framework utilizes structure preference op-
timization via the DPO algorithm and achieves an improve-
ment of 6.27%. In conclusion, these improvements show our
framework combines Fingerprints-based Reaction Retrieval,
Domain-Specific Prompt Design, and two-stage In-Context
Tuning, excelling in the reaction captioning task.

Experimental Procedure Prediction
This task is to predict step-by-step actions of conducting
chemical experiments and every action is predefined by
Vaucher et al. (2021). We employ the evaluation metrics fol-
lowing Liu et al. (2024b) and Vaucher et al. (2021) and Table
2 shows the performances. Validity examines the syntacti-
cal correctness of the predicted action sequences. 90%LEV
represents the ratio of predictions with a normalized Leven-
shtein similarity larger than 90%. Specifically, compared to
the original foundation models with naive SFT, ReactGPT
achieves an improvement of 4.45% BLEU-4 and 10.20%
50%LEV, demonstrating its generalization performance on
different tasks. Moreover, ReactGPT achieves 100% for the
validity and can perform as well as ReactXT (Liu et al.
2024b), which is pre-trained and fully fine-tuned base on
Galactica-1.3B for 20 epochs.

Ablation Study
Study of k context examples The number of context ex-
amples is a factor that affects model performance, since dif-
ferent quantities of context examples denote to the varying
lengths of prompts and different amounts of domain knowl-
edge infusion. We set the cutoff length of input to 4096 to
avoid affecting the input length. Figure 3 shows that Re-
actGPT’s performance with a different number of context
examples. We can observe an obvious difference in perfor-
mance between 0-shot and k-shot settings. The presence of
context examples leads to improved performance, which in-
dicates the effectiveness of the In-Context Tuning. Specifi-
cally, we can observe that either a small (k = 1) or large
number (k = 3) of context examples could not reach the
optimal results. This may be due to the insufficient domain
knowledge injection and the model’s limitation of handling
a long context of input. In conclusion, when the number of
context examples is set to 2, our model is capable of learning
sufficiently from domain knowledge without being affected
by the limitations of context length.

Study of different components To evaluate the effective-
ness of different components, we compare ReactGPT with it
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Methods BLEU-2 BLEU-4 100%LEV 90%LEV 75%LEV 50%LEV ROUGE-1 ROUGE-2 ROUGE-L Validity

Nearest Neighbor 45.00 30.70 0.60 6.50 13.00 38.40 55.70 29.20 47.00 76.00

MolT5-Base 54.04 40.31 0.30 4.27 13.22 60.34 61.56 39.43 55.30 99.10

MolT5-Large 54.50 41.00 0.60 6.60 16.60 63.70 62.50 40.90 57.20 99.60

Galactica 53.50 39.50 0.40 5.70 13.40 60.50 60.90 38.60 55.20 99.90

MolCA 54.90 41.50 1.00 9.20 18.90 65.30 62.50 40.40 57.00 99.90

ReactXT 57.40 44.00 1.00 9.50 22.60 70.20 64.40 42.70 58.90 100.00
LLaMA3 51.73 39.28 1.80 7.70 18.50 62.50 62.52 39.50 56.19 99.80

ReactGPT (ours) 57.89 43.73 1.89 8.00 21.96 72.70 66.10 42.95 59.98 100.00

Table 2: Results of different models for Experimental Procedure Prediction task(%). The best scores are marked in bold. For
models larger than 6B, we utilize the LoRA (Low-Rank Adaptation) method for low-rank fine-tuning to save running memory.

Methods BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Structure Succ.

ReactGPT (ours) 48.12 36.41 53.92 28.88 42.23 47.54 89.53

w/o retrieval 45.69 33.91 52.29 26.93 41.39 45.32 80.56

w/o In-Context Tuning 43.54 32.23 51.29 26.52 40.05 44.37 76.56

Table 3: Ablation Study of ReactGPT across different components.
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Figure 3: The model performance with a different number of
context examples.

variants on the reaction captioning task: 1) w/o Fingerprints-
based Reaction Retrieval. In this variant, we have eliminated
the retrieval component and directly utilized random context
examples to provide domain knowledge. 2) w/o In-Context
Tuning. In this variant, we remove the In-Context Tuning
stage.

From Table 3, we can observe that 1) ReactGPT exhibits
the best performance, indicating that its effectiveness is a cu-
mulative contribution of all its components. 2) The absence
of retrieval module results in the model’s inability to learn
from similar context examples and only obtains limited im-
provements from random context examples, therefore per-
forming worse than ReactGPT. 3) Whether the model incor-

porates random context examples or selects the most simi-
lar ones, the outcome is superior to that of a model without
In-Context Tuning, underscoring the necessity and effective-
ness of In-Context Tuning.

Conclusion
A wealth of chemical reactions and their text descriptions
exist in patents and scientific literature. By aligning chem-
ical reactions and natural language texts, it will be benefi-
cial to quickly understand chemical reactions, obtain infor-
mation such as reaction conditions and reaction yields, and
strengthen research in the field of chemistry.

In this work, we propose ReactGPT, a novel approach
that adapts LLMs to align between chemical reactions and
natural language texts. ReactGPT enables LLMs to utilize
the relevant domain knowledge and the ability of in-context
learning to understand chemical reactions and generate their
textual representations. Moreover, we propose a new task:
reaction captioning, which aims to generate a detailed de-
scription of chemical reactions. In the two tasks of reaction
captioning and experimental procedure prediction, React-
GPT is able to achieve a good performance, which indicates
the effectiveness of our methods.
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