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Abstract
In today’s interconnectedworld, achieving reliable out-of-distribution (OOD) detection poses
a significant challenge formachine learningmodels.While numerous studies have introduced
improved approaches for multi-class OOD detection tasks, the investigation into multi-label
OOD detection tasks has been notably limited. We introduce Spectral Normalized Joint
Energy (SNoJoE), a method that consolidates label-specific information across multiple
labels through the theoretically justified concept of an energy-based function. Throughout
the training process, we employ spectral normalization to manage the model’s feature space,
thereby enhancingmodel efficacy andgeneralization, in addition to bolstering robustness.Our
findings indicate that the application of spectral normalization to joint energy scores notably
amplifies the model’s capability for OOD detection.We performOOD detection experiments
utilizing PASCAL-VOC or MS-COCO as the in-distribution dataset and ImageNet-22K or
Texture as the out-of-distribution datasets. Our experimental results reveal that, in comparison
to prior top performances, SNoJoE achieves 11% and 54% relative reductions in FPR95 on
ImageNet-22K and Texture, respectively, when using PASCAL-VOC as the in-distribution
dataset. Similarly, withMS-COCOas the in-distribution dataset, SNoJoE achieves 11.3% and
42.58% relative reductions on ImageNet-22K and Texture. These improvements establish a
new state of the art in OOD detection and further validate the effectiveness of incorporating
spectral normalization.
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1 Introduction

In the current digital era, the pervasive use of machine learning models is undeniable. How-
ever, these models often grapple with data that deviates from their training data, known as
out-of-distribution (OOD) data, when deployed in real-world settings. This discrepancy can
lead to inaccurate predictions, raising safety concerns and other issues. OOD detection plays
a crucial role in identifying unfamiliar data, thereby enhancing model safety and robustness
in diverse environments. Thus, assessing OOD uncertainty emerges as a critical challenge
for researchers.

Significant advancements have been made in OOD detection research. The Local Outlier
Factor (LOF) method [1] and unsupervised outlier detection using globally optimal sample-
based Gaussian Mixture Models (GMM) by Yang et al. [2] represent foundational work.
G-ODIN [3] builds on ODIN [4] to improve sensitivity to covariate shifts. OpenMax [5]
introduces Extreme Value Theory (EVT) to neural networks, calibrating logits with EVT
probability models, including the Weibull distribution. Classification-based approaches see
innovations like extendingOne-Class Classification (OCC) through elastic-net regularization
for learning decision boundaries [6], and selecting reliable data from unlabeled sources as
negative samples for supervised anomaly detection settings [7].

Despite these advancements, OOD detection in multi-label classification contexts remains
underexplored. Multi-label classification poses unique challenges due to the necessity of
evaluating uncertainty acrossmultiple labels, rather than a single dominant one [8].Achieving
stable model training is essential for accurate multi-label OOD sample identification, with
strategies like using free energy for OOD uncertainty assessment proposed by Liu et al. [9].

This paper introduces a novel approach, Spectral Normalized Joint Energy (SNoJoE),
for assessing OOD uncertainty in multi-label datasets. SNoJoE calculates free energy for
each label and combines these energies, overcoming the difficulties generative models face
in estimating joint likelihood for multi-label data [10]. Additionally, it demonstrates that
aggregating label energies is more effective than summing label scores in OOD detection
evaluations [8], highlighting the importance of choosing the right label assessment function.

We also utilize ResNet for feature extraction from in-distribution images, employing an
energy function as the metric for OOD assessment. To counter overfitting and enhance model
robustness, we apply spectral normalization as a regularization technique. Our findings show
that spectral normalization reduces gradient variation ranges during training, minimizing the
risk of gradient problems and promoting a well-regulated feature space. This approach helps
the model to generalize better to OOD instances by focusing on extracting generalizable
features rather than memorizing training data. Applying spectral normalization to OOD
detection tasks has been shown to significantly improvemodel performance, such as achieving
a 54% reduction in FPR95 on the Texture dataset with respect to PASCAL-VOC (t-test
p-value < 0.01), underscoring the technique’s value inOODdetection. Similarly,when using
MS-COCO as the in-distribution dataset, spectral normalization leads to a 42.58% reduction
in FPR95 on the Texture dataset, further demonstrating its robustness and effectiveness across
different in-distribution settings.

Our main contributions include:

• Introducing SNoJoE, an innovative method for OOD uncertainty assessment in multi-
label classification that can deliver today’s best performance on two real-world datasets.
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• Demonstrating through ablation studies that spectral normalization significantly enhances
multi-label OOD detection performance.

• Establishing an enhanced baseline incorporating spectral regularization for comparison,
providing deeper insights into the role of spectral constraints in OOD detection.

• Making our experimental code and datasets available for reproducible research.1

2 Related work

2.1 Multi-label classification

Unlike the simpler scenario of multi-class (single-label) classification, multi-label classifi-
cation allows each image to be associated with multiple label concepts. Early approaches
to multi-label classification treated the presence of each label independently, neglecting the
potential correlations among labels [11, 12].

Initial research inmulti-label classification demanded significant computational resources.
Ghamrawi andMcCallum [13] employed Conditional Random Fields (CRF) to create graph-
ical models that identify correlations between labels, andChen et al. [14] integrated CRFwith
deep learning techniques to examine the dependencies among output variables. These strate-
gies necessitate the explicit modeling of label correlations, leading to elevated computational
demands.

Conversely, deep learning techniques do not inherently require substantial computational
resources for multi-class recognition tasks and have shown notable effects [15, 16]. Gong
et al. [11] utilized Convolutional Neural Networks (CNN) to label images with 3 or 5 labels in
the NUS-WIDE dataset, while Chen et al. [17] applied CNNs to categorize road scene images
from a set of 52 potential labels. Thus, efficiently solvingmulti-label classification challenges
is intricately linked to a wide range of applications in the contemporary open world.

2.2 Out-of-distribution detection

In the realm of OOD detection, research has primarily concentrated on four areas: Novelty Det-
ection (ND),OpenSetRecognition(OSR),OutlierDetection(OD), andAnomalyDetection(AD).

Initially, methods leaned heavily on confidence estimation and the setting of thresholds,
judging inputs’ relevance to known categories by the confidence scores produced by the
model. However, they often falter when facing complex data distributions. Zhang et al. [18]
introduced OpenHybrid, a strategy that combines representation space learning from both an
inlier classifier and a density estimator, the latter acting as an outlier detector.

Ayadi et al. [19] outlined twelve diverse interpretations of outliers, highlighting the chal-
lenge of defining outliers precisely. This has spurred a wave of innovative approaches for
identifying and addressing outliers [20]. Among them, density-based methods for detecting
outliers represent some of the earliest strategies. The Local Outlier Factor (LOF) method,
introduced by Breunig et al. [1], stands as a pioneering density-based clustering technique
for outlier detection, leveraging the concept of loose correlation through k-nearest neighbors
(KNN). LOF calculates local reachability density (LRD) within each point’s KNN set and
compares it to the densities of neighbors within that set.

Yang et al. [2] proposed an unsupervised outlier detection approach using a globally
optimal sample-based Gaussian Mixture Model (GMM), employing the Expectation-

1 https://github.com/Nicholas-Mei/Ood_Detection_SNoJoE
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Maximization (EM) algorithm for optimal fitting to the dataset. They define an outlier factor
for each data point as the weighted sum of mixture proportions, where weights denote the
relationships among data points.

Certain studies have focused on increasing sensitivity to covariate shifts by examining hid-
den representations in neural networks’ intermediate layers. Generalized ODIN [3] builds
on ODIN [4] by adopting a specialized training objective, DeConf-C, and choosing hyper-
parameters like perturbation magnitude for in-distribution data. Wei et al. [21] demonstrated
that issues of overconfidence could be alleviated through Logit Normalization (Logit Norm),
which counters the typical cross-entropy loss by enforcing a constant vector norm on logits
during training, enabling neural networks to distinctly differentiate between in-distribution
andOODdata. Other efforts have sought to refineOODuncertainty estimation via confidence
scores based on Mahalanobis distance [22] and gradient-based GradNorm scores [23].

Within classification-based OOD detection methods, One-Class Classification (OCC)
uniquely establishes a decision boundary matching the expected normal data distribution
density level set [24]. Deep SVDD [25] was the first to adapt classical OCC for deep learn-
ing, mapping normal samples to a hypersphere to delineate normality. Deviations from this
model are flagged as anomalous. Later efforts expanded this approach through elastic regu-
larization [6] or adaptive descriptions with multi-linear hyperplanes [26]. Additionally, some
methods employ Positive-Unlabeled (PU) learning in semi-supervised AD contexts, provid-
ing unlabeled data alongside normal data. Mainstream PU strategies either select reliable
negative samples for a supervised AD setting, using clustering [7] and density models [27],
or treat all unlabeled data as noise negatives for learning with noise labels, employing sample
re-weighting [28] and label cleaning [29, 30].

Despite advancements, OOD detection remains a challenging field, predominantly
explored within multi-class tasks, with limited work in multi-label classification. A notable
exception is YolOOD [31], which draws inspiration from object detection frameworks to
address the multi-label OOD detection problem. Instead of modeling the entire image holis-
tically, YolOOD treats each predicted label as a distinct region and evaluates its “objectness”
to determine whether it corresponds to an in-distribution or out-of-distribution label. This
reformulation allows the model to localize and score anomalous instances at the region level,
offering fine-grained anomaly signals particularly suitable for complexmulti-label scenarios.

Hence, we introduce a technique that integrates spectral normalization into the network
and utilizes energy scores to derive label-wise joint energy scores for OOD detection tasks.

2.3 Energy-basedmodels

Energy-basedmodels (EBMs) in machine learning trace their origins to Boltzmannmachines
[32]. This approach offers a cohesive framework encompassing a broad spectrum of learning
algorithms, both probabilistic and deterministic [33, 34]. Xie et al. [35] showed that the
discriminative classifiers within GAN networks can be interpreted through an energy-based
lens. Moreover, these methods have been leveraged for structured prediction challenges [36].

Recent studies [9, 37] have advocated for the use of energy scores in detecting OOD
instances, grounding their arguments in theoretical perspectives related to likelihood [38].
Here, samples exhibiting lower energy are classified as in-distribution (ID), while those with
higher energy are flagged as OOD. Liu et al. [9] pioneered a technique for quantifying OOD
uncertainty by utilizing energy scores, showcasing remarkable efficacy in multi-class clas-
sification networks. Meanwhile, research by Wang et al. [8] targets multi-label contexts,
illustrating the benefits of harnessing the collective power of all label data. Our contribution
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merges cross-label energy scores, affirming enhanced performance through the implementa-
tion of spectral normalization.

3 Method

In this section, we introduce a novel approach for OOD detection in multi-label scenarios.
First, we address multi-label inputs by integrating concepts from the free energy function,
assessing OOD uncertainty through the evaluation of joint label energies across labels. Sub-
sequently, we present SNoJoE, a technique that applies spectral normalization to the joint
label energy scores. This enhancement not only improves the model’s robustness but also
facilitates the extraction of features that are more generalizable.

3.1 Preliminaries

3.1.1 Multi-label classification

Multi-label classification is a machine learning task where the goal is to assign input data
samples to one or more categories out of a set of predefined labels. Unlike traditional single-
label classification tasks, where each sample can only belong to one category, multi-label
classification allows a sample to have multiple labels simultaneously. Generally, consider
X (representing the input space) and Y (representing the output space), with P denoting
a distribution over X × Y . Suppose f : X −→ R

|Y| represents a neural network trained
on samples drawn from P. Each input can be correlated with a subset of labels in Y =
1, 2, · · · , K , denoted by a vector y = [y1, y2, · · · , yK ], where

yi =
{
1 , if i is associated with x

0 , otherwise
. (1)

Utilizing a convolutional neural network (CNN) with a shared feature space, we generate
multi-label output predictions. This approachhas emerged as the standard trainingmechanism
for multi-label classification tasks, finding widespread application across various domains
[39, 40].

3.1.2 Out-of-distribution detection

Similar to the concept presented in [8], we define the problem of OOD detection for multi-
label classification as follows. Let Din denote the marginal distribution P over the label
set X , representing the distribution of in-distribution data. During testing, the environment
may generate out-of-distribution data Dout on X . The goal of OOD detection is to define a
decision function D such that:

D(x; f ) =
{
1 , if x ∼ Din

0 , if x ∼ Dout
. (2)

3.1.3 Energy function

The definition of the energy equation was first proposed by Liu et al. They introduced the
free energy as the scoring function for OOD uncertainty assessment in a multi-class setting.
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Given a classifier f (x) : X → R
K mapping the input x to K real numbers as logits, the class

distribution is represented through softmax:

p(yi = 1|x) = e fyi (x)

�K
j=1e

fy j (x)
. (3)

Then, the transformation from logits to probability distribution is achieved through the Boltz-
mann distribution:

p(yi = 1|x) = e−E(x,yi )∫
y′ e−E(x,y′) = e−E(x,yi )

e−E(x)
. (4)

Thus, the initially defined classifier can be interpreted from an energy-based perspective.
Viewing the logits fyi (x) as an energy function E(x, yi ), we can obtain the free energy
function E(x) for any given input x:

E(x) = − log
K∑
i=1

e fyi (x). (5)

3.1.4 Spectral regularization

Deep neural networks often suffer from overfitting and instability due to excessively large
singular values in their weight matrices. Spectral regularization provides a solution by con-
straining these singular values, thereby improving model generalization and robustness. This
technique has been widely used in adversarial robustness, structured sparsity, and general
deep learning applications where model stability is crucial.

The core idea of spectral regularization is to control the spectral norm or other relatedmea-
sures (e.g., Frobenius norm or nuclear norm) of the weight matrices in the network. By reduc-
ing the dominance of large singular values, the model learns a more balanced and compact
representation, leading to improvedgeneralization andbetter resistance to input perturbations.

In our implementation, we adopt spectral norm regularization, which directly penalizes the
largest singular value σmax (W ) of a weight matrixW . The additional loss term is formulated
as:

Lspec = λreg ‖σmax (W )‖ (6)

where λreg is the regularization strength that controls the impact of the spectral constraint.
Thismethod provides different levels of constraint on theweightmatrices, and their effects

are analyzed in Section 4.

3.2 Label-wise joint energy

We first consider the problem of OOD uncertainty detection on a standard multi-label clas-
sifier. For a given input x , its output for the i-th class is:

fyi (x) = hl−1(x) · wi
cls , (7)

where hl−1(x) is the feature vector of the penultimate layer of the network, and wi
cls is

the weight matrix corresponding to i-th class. The predictive probability of label yi is then
implemented through a variant of a binary logistic classifier:

p(yi = 1 | x) = e fyi (x)

1 + e fyi (x)
. (8)
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For the logistic form in (8), we can consider it as a softmax form with only 0 and e fyi (x) as
the logits:

p(yi = 1 | x) = e fyi (x)

e0 + e fyi (x)
. (9)

Through the softmax form of (9), for each i ∈ {1, 2, ..., K }, the energy function of class yi
can be expressed as follows:

Eyi (x) = − ln(1 + e fyi (x)). (10)

Therefore, for each class {yi }Ki=1, we can derive a label-wise joint energy function as follows:

E joint (x) =
K∑
i=1

−Eyi (x) (11)

In Equation (10), we consider the joint uncertainty among labels. Wang et al. [8] provided
a theoretical foundation based on joint likelihood. Subsequent work by Zhang and Taneva-
Popova [41], however, found that while Wang et al.’s approach assumed label independence,
contrary to the initial beliefs of leveraging label independencies, joint energy indeed provides
the optimal probabilistic approach to address the multi-label OOD problems. Moreover,
Wang et al. [8] confirmed that utilizing multiple dominant labels to signal in-distribution
inputs effectively captures data features, thus bypassing the need for direct computation and
optimization inmulti-label datasets. This approach also sidesteps the complexities associated
with estimating joint likelihood through generative models, a notably challenging endeavor.

After deriving the label-wise joint energy in (11), we can utilize this method to detect the
OOD uncertainty:

D(x; τ) =
{
out if E joint (x) ≤ τ

in if E joint (x) > τ
, (12)

where τ is the energy threshold. In our experimental setup, we defined τ = 95% to ensure
that D(x; τ) can correctly classify the majority of in-distribution data.

3.3 Spectral normalized joint energy

Based on the foundation laid by Section 3.2, we present Spectral Normalized Joint Energy
(SNoJoE). As part of the feature vector extraction process, spectral normalization is applied
to the initial layers of the model. Through power iteration, we evaluate the spectral norm,
guaranteeing that the weight matrices of the model adhere to bi-Lipschitz constraint.

Firstly,we need to ensure that the spectral normof theweightmatrices gl (x) = σ(Wlx+b)
in the non-linear residual blocks of the network is less than 1, thereby ensuring:

‖gl‖Lipschit z ≤ ‖Wlx + b‖Lipschit z ≤ ‖Wl‖2 ≤ 1. (13)

To achieve this, we apply spectral normalization to constrain the weight matrices of the first
L layers in the network:

Wl =
{
Wl/σ 1 ≤ l ≤ L

Wl l > L
, (14)

where σ is the spectral norm of the weight matrix, defined as the maximum singular value
of the weight matrix. This singular value is obtained through singular value decomposi-
tion(SVD) of the weight matrix. As recommended in [42], spectral normalization is used to
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enforce the weight matrices {Wl}Ll=1 in (13) to be Lipschitz-constrained, ensuring that the
hidden layer parameters hi (x) “distance preserving”.

Bartlett et al. [43] demonstrates that consider a hiddenmapping h : X −→ Y with residual
architecture h = hl−1 ◦ · · · ◦ h2 ◦ h1(x) where hl(x) = x + gl(x). If for 0 < α ≤ 1, all gl ’s
are α-Lipschitz, i.e.,

∥∥gl(x) − gl(x ′)
∥∥
Y ≤ α

∥∥x − x ′∥∥
X ∀(x, x ′) ∈ X . Then:

Lipslower ∗ ∥∥x − x ′∥∥
X ≤ ∥∥h(x) − h(x ′)

∥∥
Y ≤ Lipsupper ∗ ∥∥x − x ′∥∥

X , (15)

where Lipslower = (1 − α)L−1 and Lipsupper = (1 + α)L−1 are respectively the lower
and upper bounds of Lipschitz continuity. Through the bi-Lipschitz constraint, the upper
bound prevents overfitting during model gradient updates, ensuring the generalization and
robustness of the model. The lower bound ensures that there is a certain distance maintained
between input feature vectors, i.e., h(x) isdistance preserving, thereby enabling the extraction
of more generalizable features.

Combining the approach from Section 3.2, we now update the expression for hi (x) in (7):

hi (x) =
{

Wi−1
σ

· hi−1(x) 2 ≤ i ≤ L

Wi−1 · hi−1(x) otherwise
(16)

Through the transformation of hi (x) in (16), the feature vectors can possess the property of
“distance preserving” and replace hi (x) in (7) to complete the subsequent OOD uncertainty
detection.

4 Experiments

In this section, we expound upon our experimental configuration (Section 4.1) and show-
case the effectiveness of our approach across various out-of-distribution (OOD) evaluation
tasks (Section 4.2). Furthermore, we delve into ablation studies and conduct comparative
analyses, thereby fostering a deeper comprehension of distinct methodologies and ultimately
contributing to an enhanced understanding of the field.

4.1 Setup

4.1.1 In-distribution datasets

We consider the PASCAL-VOC [44] and MS-COCO [45] as the in distribution multi-label
dataset. MS-COCO comprises 82,783 images for training, 40,504 images for validation,
and 40,775 images for testing, encompassing 80 commonly encountered object categories.
PASCAL-VOC comprises 22,531 images of objects from 20 different categories such as
people, dogs, cars, etc., with detailed annotations provided. In this paper, We conduct the
OOD detection task to evaluate the performance of our proposed method on this dataset.

4.1.2 Training details

In this study, the multi-label classifier trained is based on the ResNet-101 backbone architec-
ture. The classifier is pretrained on ImageNet-1K [47], and the last layer is replaced by two
fully connected layers. Spectral normalization is applied to the first 9 layers of the model.
We utilize the Adam optimizer with standard parameters(β1 = 0.9, β2 = 0.999), and the
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initial learning rate during training is set to 1× 10−4. Data augmentation techniques such as
random cropping and random flipping are employed during training to enhance the dataset,
resulting in color images of size 256×256. After training, themeanAverage Precision (mAP)
on PASCAL-VOC is 89.19%, while on MS-COCO, it is 76.52%. The entire experimental
process is conducted on NVIDIA RTX A6000.

Besides, to evaluate the impact of spectral regularization, we integrate it into our baseline
model and compare its performance with our proposed method SNoJoE.

The model is trained with a standard Binary Cross-Entropy (BCE) loss, defined as:

Loriginal = − 1

N

N∑
i=1

[yi log f (xi ; θ) + (1 − yi ) log(1 − f (xi ; θ))] (17)

We incorporate spectral regularization into the total loss function as follows:

Ltotal = Loriginal + Lspec (18)

The value of λreg in Lspec is chosen from {5 × 10−5, 1 × 10−4, 5 × 10−4} based on a
grid search strategy to find the best trade-off between regularization and model accuracy
(Table 1).

4.1.3 Out-of-distribution datasets

To evaluate the performance of the model trained on the in-distribution dataset, we designate
20 classes from ImageNet-22K [47] and employ Texture dataset [48] as out-of-distribution
(OOD) datasets. Following the evaluation protocol outlined in [8], we configure the
ImageNet-22K dataset in a identical manner for evaluating the PASCAL-VOC pretrained
model. The selected classes for evaluation encompass a diverse range, including dolphin,
deer, bat, rhino, raccoon, octopus, giant clam, leech, venus flytrap, cherry tree, Japanese
cherry blossoms, redwood, sunflower, croissant, stick cinnamon, cotton, rice, sugar cane,
bamboo, turmeric.

4.1.4 Evaluation metrics

In our experiments, we employ commonly used evaluation metrics for OOD detection under
multi-label settings: (i) the false positive rate (FPR95) of OOD examples is calculated when
the true positive rate (TPR) of in-distribution examples is held constant at 95%; (ii) the area
under the receiver operating characteristic curve (AUROC); (iii) the area under the precision-
recall curve (AUPR).

Table 1 The dataset configuration in experiments

Dataset Role #Classes #Instances

PASCAL-VOC [44] In-Distribution (ID) 20 22,531

MS-COCO [45] In-Distribution (ID) 80 82,783

ImageNet-22K [47] Out-of-Distribution (OOD) 20 (out of 21841) 18,835

Texture [48] Out-of-Distribution (OOD) 47 5,640
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Table 2 The comparison ofOODdetection performance using spectral normalized joint energy vs. competitive
baselines

Din PASCAL-VOC [44] MS-COCO [45]
OOD Score FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
MaxLogit [50] 36.32 91.04 82.68 34.54 90.93 94.30

MSP [51] 69.85 78.24 67.93 77.92 72.43 83.34

ODIN [4] 36.32 91.04 82.68 34.58 90.26 93.69

Mahalanobis [22] 78.02 70.93 59.84 94.04 49.49 70.71

LOF [1] 76.71 67.54 55.35 74.30 74.87 85.82

Isolation Forest [52] 98.64 41.94 33.50 99.06 37.59 63.43

JointEnergy [8] 31.96 92.32 86.87 31.51 92.68 96.15

JointEnergy‡ 30.29 93.19 87.93 29.24 93.38 96.59

SNoJoE(ours) 28.49 93.48 88.11 27.97 93.91 96.92

Note: JointEnergy‡ represents the variant of JointEnergy with spectral regularization applied
We use ResNet [49] to train on the in-distribution dataset and use ImageNet-22K (20 classes) as OOD dataset.
All values are percentages. Bold numbers are superior results. ↑ indicates larger values are better, and ↓
indicates smaller values are better

4.2 Results

In Table 2, we compare our approach with leading OOD detection methods from the litera-
ture, showcasing SNoJoE as the new state-of-the-art benchmark. Our experimental design
carefully selects methods based on pre-trainedmodels to maintain fair comparison standards.
Following the guidelines set forth in [8], we evaluated all metrics using the ImageNet dataset
for OOD detection.

Additionally, as detailed in Section 4.1,we conducted further evaluations using the Texture
dataset for OOD detection, with results presented in Table 3. Noteworthy, baseline methods
likeMaxLogit [50], Maximum Softmax Probability (MSP) [51], ODIN [4], andMahalanobis
[22] utilize statistics from the highest values across labels to calculate OOD scores. The Local
Outlier Factor (LOF) [1] usesK-nearest neighbors (KNN) to assess local densities, identifying

Table 3 OOD detection performance using spectral normalized joint energy vs. competitive baselines on
Texture [48] as the OOD dataset

Din PASCAL-VOC [44] MS-COCO [45]
OOD Score FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
MaxLogit [50] 12.36 96.22 96.97 14.63 96.10 99.32

MSP [51] 41.81 89.76 93.00 60.82 83.70 97.05

ODIN [4] 12.36 96.22 96.97 12.22 96.18 99.29

Mahalanobis [22] 19.17 96.23 97.90 44.61 85.71 97.41

LOF [1] 89.49 60.37 76.70 70.16 74.73 94.96

Isolation Forest [52] 99.59 20.89 50.11 95.55 53.21 90.45

JointEnergy [8] 10.87 96.78 97.87 12.82 96.84 99.54

JointEnergy‡ 6.05 98.15 98.91 8.78 97.55 99.60

SNoJoE(ours) 5.02† 98.48† 99.00† 7.36† 97.80† 99.64†

Besides, † denotes that SNoJoE is statistically better (t-test with p-value < 0.01) than JointEnergy
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Figure 1 OODdetection performance of JointEnergy‡ while using differentλreg on ImageNet-22K(20 classes)
as the OOD dataset

OOD samples through their relatively lower densities compared to neighbors. The Isolation
Forest method [52], a tree-based strategy, identifies anomalies by the path lengths from root
to terminal nodes. JointEnergy [8] is an energy-based approach that detects OOD instances
by evaluating the joint uncertainty among labels.

Moreover, we introduce an enhanced baseline by incorporating spectral regularization into
the JointEnergy framework to further improve OOD detection performance. This approach
applies spectral constraints to the weight matrices while computing joint energy, limiting
the growth of the largest singular values to reduce overfitting to the ID data and enhance
generalization to unseen distributions. By integrating spectral regularization, this method
retains the core structure of JointEnergy while leveraging additional regularization effects to
improve the separation between in-distribution and OOD samples. This enhanced baseline
serves as a comparative method against SNoJoE, allowing us to assess the impact of spectral
regularization across different OOD detection frameworks. As shown in Tables 2 and 3,
experimental results demonstrate that this approach provides performance improvements,
further validating the potential of spectral regularization in OOD detection tasks.

To further analyze the impact of spectral regularization, we evaluate its effectiveness
under varying λreg values. As shown in Figures 1 and 2, results indicate that the choice
of λreg significantly influences OOD detection performance. For both PASCAL-VOC and
MS-COCO as in-distribution datasets, moderate regularization strengths (λreg = 1 × 10−4

or 5 × 10−4) generally lead to the best performance, achieving lower FPR95 and higher
AUROC/AUPR scores compared to weaker (5 × 10−5) or stronger regularization settings.

Figure 2 OOD detection performance of JointEnergy‡ while using different λreg on Texture as the OOD
dataset
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Specifically, in the ImageNet-22K OOD evaluation, when using PASCAL-VOC as the in-
distribution dataset, setting λreg = 1 × 10−4 achieves an FPR95 of 30.29%, outperforming
both the weaker λreg = 1 × 10−4(34.87%) and the stronger λreg = 5 × 10−4(36.63%).
Similarly, for MS-COCO, the optimal λreg setting yields an FPR95 of 29.24%, demonstrat-
ing a relative improvement over other configurations (33.31% and 30.92%). In terms of
AUROC, the best-performing spectral regularization setup achieves 93.19% and 93.38% for
PASCAL-VOC and MS-COCO. A similar trend is observed in the Texture OOD evalua-
tion, where an appropriately tuned λreg yields a considerable reduction in false positive rates
while maintaining robust detection performance. For PASCAL-VOC, the best λreg results in
an FPR95 of 6.05%. In MS-COCO, the best setting leads to an FPR95 of 8.78%, improving
upon the ablation baseline (9.22%). Additionally, AUROC and AUPR scores consistently
improve with spectral regularization, peaking at 97.55% and 99.60% under optimal config-
urations. These results reinforce the importance of carefully selecting spectral regularization
parameters to balance generalization and over-constraint effects, demonstrating that spectral
regularization effectively enhances the separability of OOD samples across diverse datasets.

When conducting OOD detection on different ID andOOD datasets, SNoJoE outperforms
several baseline methods across three evaluation metrics. Compared to JointEnergy, which
performs OOD detection by utilizing label-wise joint energy, SNoJoE consistently outper-
forms baseline methods across different in-distribution datasets. When using PASCAL-VOC
as the in-distribution dataset, SNoJoE achieves an 10.86% relative reduction of FPR95 on the
subset of ImageNet-22K and a 53.82% relative reduction on the Texture dataset. Similarly,
when using MS-COCO as the in-distribution dataset, SNoJoE achieves an 11.3% relative
reduction on ImageNet-22K and a 42.58% reduction on Texture. Furthermore, compared
to the spectral regularization-enhanced JointEnergy, which introduces spectral constraints
to improve generalization, SNoJoE further enhances OOD detection performance. Specifi-
cally, with PASCAL-VOC as in-distribution, SNoJoE achieves a 5.94% reduction in FPR95
on ImageNet-22K and a 17.02% reduction on Texture. With MS-COCO, SNoJoE achieves
a 4.34% reduction on ImageNet-22K and a 16.17% reduction on Texture. These improve-
ments demonstrate the robustness of SNoJoE across different datasets, further validating the
effectiveness of incorporating spectral normalization in OOD detection.

These improvements highlight the effectiveness of incorporating spectral normalization
in a more structured manner, leading to better separation between in-distribution and OOD
samples. Additionally, the enhancement in AUROC and AUPR further demonstrates the
robustness of SNoJoE against diverse OOD datasets. These results suggest that spectral nor-
malization, when integrated effectively, provides a substantial advantage in distinguishing
OOD instances, surpassing both the standard JointEnergy and its spectral-regularized variant.

4.3 Ablation studies

In this section, we delve into a series of ablation experiments to further affirm that neu-
ral networks, when subjected to spectral normalization, exhibit a highly regularized feature
space. This regularization, in turn, empowers them to identify generalizable features within
the data more effectively, thereby enhancing their capability to accurately distinguish
out-of-distribution (OOD) data. The observed performance improvement of SNoJoE over
JointEnergy, as highlighted in Tables 2 and 3, underscores that spectral normalization plays a
pivotal role in enabling the extraction of more generalizable features from image input space
vectors. This enhancement bolsters the model’s proficiency in recognizing OOD samples
with greater effectiveness.
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Table 4 Ablation study on the impact of the numbers of layers applied spectral normalization using ImageNet-
22K (20 classes) as OOD dataset

Din PASCAL-VOC MS-COCO
#layers FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
0 31.37 93.37 89.29 29.29 93.09 96.31

7 48.19 89.59 84.19 30.74 93.10 96.42

8 30.85 92.98 87.24 26.14 93.74 96.64

9 28.49 93.48 88.11 27.97 93.91 96.92

#layers are numbers of layers applied spectral normalization

In conducting our ablation studies, we persist in utilizing JointEnergy [8] as the bench-
mark for comparison against our method, SNoJoE. This choice is motivated by the findings
presented in Section 4.2, where JointEnergy emerged as themost proficient among competing
methods, excluding ours. It’s noteworthy that both JointEnergy and SNoJoE capitalize on the
joint uncertainty between labels to facilitate OOD detection. For the training configurations
and parameters, we adhere to the specifications outlined in Section 4.1.

Additionally, we explored the application of spectral normalization across various layers
of the network structure to gauge its influence onmulti-label OODdetection tasks. Our exper-
imental findings, detailed in Tables 4 and 5, involved implementing spectral normalization at
different levels within the ResNet framework [49] to assess its effect on OOD detection. The
results suggest that indiscriminate use of spectral normalization could, in some cases, impair
themodel’s ability to performmulti-label OODdetection effectively. Specifically, when spec-
tral normalization is limited to the first seven layers of the network (refer to the second row
of Tables 4 and 5), the model’s efficacy may decline compared to a non-normalized version.
This deterioration in performance might stem from the application of spectral normalization
solely to the network’s more superficial layers. Given that these initial layers process sim-
pler representations, imposing stringent constraints on them could diminish the network’s
capacity for expressive representation, thereby undermining its performance. Conversely,
extending spectral normalization to the model’s deeper layers (as illustrated in the last two
rows of Tables 4 and 5) appears to enhance the model’s proficiency in learning and capturing
intricate input vector features. This improvement is likely due to the advanced abstraction
abilities of the deeper layers.

To evaluate the generality of this observation across architectures, we further conduct
ablation studies on alternative backbone networks such as DenseNet. The results, presented
inAppendix, demonstrate similar trends and reinforce our conclusion that spectral normaliza-
tion, when applied to carefully chosen layers, offers a favorable balance between performance

Table 5 Ablation study on the impact of the numbers of layers applied spectral normalization using Texture
[48] as OOD dataset

Din PASCAL-VOC MS-COCO
#layers FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
0 6.21 97.87 98.58 9.22 96.94 99.45

7 6.72 98.20 98.94 9.22 97.57 99.62

8 4.91 98.49 98.94 8.62 97.33 99.55

9 5.02 98.48 99.00 7.36 97.80 99.64

#layers are numbers of layers applied spectral normalization
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and efficiency. However, this finding should not bemisconstrued to suggest that greater appli-
cation of spectral normalization invariably results in superior performance, as it also increases
computational demands. Furthermore, the practicality of applying spectral normalization to
certain layers (such as those involved in average pooling to decrease spatial dimensions of
feature maps) remains questionable, given the negligible benefits it may offer.

In summary, our experiments reveal that indiscriminate use of spectral normalization
across the network does not invariably enhance the model’s performance and might even
impair it. Nevertheless, if spectral normalization is judiciously applied to enable the network
to more effectively learn complex and generalizable features from the input vectors, the
model’s performance surpasses that of models without spectral normalization. The perfor-
mance discrepancy can reach as high as 2.88% and 1.30% in FPR95, with the OOD dataset
being ImageNet-22K and Texture, respectively. Similarly, when using MS-COCO as the
in-distribution dataset, the discrepancy increases to 3.15% on ImageNet-22K and 1.86% on
Texture.

5 Conclusion

In this study, we introduce a cutting-edge method for OOD detection named Spectral Nor-
malized Joint Energy (SNoJoE) in the context of multi-label classification.

Our findings reveal that spectral normalization applied to the initial layers of a pre-trained
model’s network significantly enhances model robustness, improves generalization capa-
bilities, and more effectively distinguishes between in-distribution and out-of-distribution
inputs. To further investigate the impact of spectral constraints, we introduce an enhanced
baseline incorporating spectral regularization, which provides additional insights into the
role of spectral properties in OOD detection. Experimental results demonstrate that SNo-
JoE consistently outperforms this enhanced baseline and other state-of-the-art approaches
across multiple datasets, establishing itself as a new state of the art in this domain, while not
substantially increasing computational demands.

We anticipate that our contribution will spark further exploration into multi-label OOD
detection and encourage the expansion of this research area into wider applications.

Appendix: Extended ablation studies on spectral normalization scope

To supplement the results reported in Section 4.3 (Tables 4 and 5), we conducted further abla-
tion studies to assess the generalizability of spectral normalization (SN) across architectures

Table 6 Ablation study on the impact of the numbers of layers applied spectral normalization

Din PASCAL-VOC MS-COCO
#layers FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
10 37.00 91.89 86.87 29.48 93.74 96.83

30 32.00 93.09 88.14 34.07 92.81 96.57

60 35.20 92.70 88.23 32.58 93.16 96.57

90 36.24 92.12 87.35 34.07 92.25 95.90

all 34.38 93.01 88.74 29.78 93.56 96.70

We use DenseNet121 to train on the in-distribution dataset and use ImageNet-22K(20 classes) as OOD dataset.
#layers are numbers of layers applied spectral normalization
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Table 7 Ablation study on the impact of the numbers of layers applied spectral normalization

Din PASCAL-VOC MS-COCO
#layers FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
10 6.19 98.20 98.91 7.59 97.67 99.60

30 5.34 98.25 98.93 7.41 97.73 99.63

60 7.34 97.89 98.82 7.91 97.73 99.62

90 8.23 97.63 98.60 9.13 97.41 99.57

all 5.07 98.42 99.06 7.84 97.73 99.63

We use DenseNet121 to train on the in-distribution dataset and use Texture as OOD dataset. #layers are
numbers of layers applied spectral normalization

and configurations. These extended experiments focus on the scope of spectral normalization
application, aiming to determine whether applying SN to more or all layers yields consistent
benefits, and whether the insights from ResNet101 can be transferred to other backbones
such as DenseNet.

Specifically, we evaluate three configurations for SN application: (1) applying SN to a
larger number of layers than our original design; and (2) applying SN to all eligible layers
throughout the network. Importantly, all other hyperparameters are kept fixed across experi-
ments to ensure fair and controlled comparison.

Table 6 presents results on DenseNet121 with varying SN configurations. Table 7 shows
similar experiments using Texture as OOD dataset, validating that the conclusions drawn
fromResNet-based experiments holdmore broadly.These results reinforce our core claim that
targeted application of SN to early or structurally critical layers achieves a favorable trade-off
between OOD performance and computational efficiency, whereas aggressive normalization
across all layers may lead tomarginal gains at best, and sometimes even degrade performance
due to over-regularization.
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