36TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE A VIRTUAL CONFERENCE FEBRUARY 22 - MARCH 1, 2022

LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification

Jiangjie Chen^{1,2}, Qiaoben Bao¹, Changzhi Sun², Xinbo Zhang², Jiaze Chen², Hao Zhou², Yanghua Xiao¹, Lei Li³

AAAI-22

UC SANTA BARBARA

Did Donald Trump win the 2020 U.S. presidential election?

Fact Verification

- Input: a claim + a KB
- Task:

- Evidence Extraction

 Evidence from a trustworthy KB

- Veracity Prediction

- Supported (SUP)
- Refuted (REF)
- Not Enough Information (NEI)

Claim

The Rodney King riots took place in the most populous county in the USA.

[wiki/Los Angeles Riots]

The 1992 Los Angeles riots, <u>also known</u> <u>as the Rodney King riots were a series of</u> <u>riots</u>, lootings, arsons, and civil disturbances that <u>occurred in Los Angeles</u> <u>County</u>, California in April and May 1992.

[wiki/Los Angeles_County]

Los Angeles County, officially County the of Los Angeles, is the most populous county in the USA.

Verdict: Supported

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, Arpit Mittal. FEVER: a large-scale dataset for Fact Extraction and VERification. NAACL, 2018.

A General Pipeline for Solving This Task

Image credit to: Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu, Nan Duan, Ming Zhou, Jiahai Wang, Jian Yin. **Reasoning Over Semantic-Level Graph for Fact Checking.** ACL 2020.

A General Pipeline for Solving This Task

Image credit to: Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu, Nan Duan, Ming Zhou, Jiahai Wang, Jian Yin. **Reasoning Over Semantic-Level Graph for Fact Checking.** ACL 2020.

Shielding from Misinformation

- Misinformation detection on social media
 Especially with the success of PLMs.
- Factually accurate language generation
 - NLG with data accuracy \checkmark
 - NLG with factual accuracy ?
 - An objective evaluation on factual accuracy of machine generated text.

Interpretable Fact Verification

Goal of Reasoning

– Right answer for the right thinking

Interpretable Fact Verification

- Goal of Reasoning
 - Right answer for the right thinking
- Interpretability "may be" the right thinking
 - Faithful: able to explain the prediction
 - Accurate: should be right per se
 - **Debuggable**: able to find out where goes wrong

Interpretable Fact Verification

• Goal of Reasoning

- Right answer for the right thinking
- Interpretability "may be" the right thinking
 - Faithful: able to explain the prediction
 - Accurate: should be right per se
 - **Debuggable**: able to find out where goes wrong

• The Research Question:

- How can we do it without supervision?

Learning from Humans

Claim: c Donald Trump won the 2020 election.

- We carefully examine each phrase in a claim one by one.
 - Did Donald Trump win the election in [2020]?
 - Did Donald Trump win the [U.S.] presidential election in 2020?

Learning from Humans

Claim: c Donald Trump won the 2020 election.

- We carefully examine each phrase in a claim one by one.
 - Did Donald Trump win the election in [2020]?
 - Did Donald Trump win the [U.S.] presidential election in 2020?

- We aggregate the verification results of each phrase following aggregation logic, i.e. a claim is found
 - *Supported* iff all phrases found supported;
 - **Refuted** iff exists a phrase found refuted;
 - **NEI** iff not refuted and exists a phrase found unverifiable.

LOREN: Overview

Symbolic AI plans, connectionist AI executes.

LOREN: Overview

• **TL;DR**: **build local premises** from evidence to support phrase veracity prediction, regularized by logical rules.

Evidence Retrieval

- Extract evidence sentences from Wikipedia following Liu et al. ACL 2020
 - Document retrieval
 - Sentence ranking
- Five relevant sentences of the entities in a claim.

Zhenghao Liu, Chenyan Xiong, Maosong Sun. Zhiyuan Liu. **Fine-grained Fact Verification with Kernel Graph Attention Network**. ACL 2020.

Claim Phrase Extraction

- Extract *claim phrases* for fine-grained decomposition
 - e.g. noun phrase, adjective phrase, named entity, etc.
- **Approach**: Parse with heuristic rules via off-the-shelf NLP tools
 - e.g. constituency parsing, pos tagging, NER, etc.

Probing Question Generation

- Goal: generate probing questions to answer from evidence.
 - Cloze question & interrogative questions
 - Prepare for the QA task

Answer Probing Questions

- **Goal**: acquire corresponding *local premises* from evidence for each claim phrase.
 - Fine-tune a Seq2Seq MRC model (BART) on a manufactured dataset based on *support* samples.

Answer Probing Questions

• **Goal**: acquire corresponding *local premises* from evidence for each claim phrase.

- Fine-tune a Seq2Seq MRC model (BART) on a manufactured dataset based on *support* samples.

Assemble Local Premises

- **Goal**: acquire corresponding *local premises* from evidence for each claim phrase.
 - Fine-tune a Seq2Seq MRC model (BART) on a manufactured dataset based on *support* samples.
 - Fill masked-claims with answered phrases to construct local premises.

Decompose claim verification $p_{\theta}(\mathbf{y} | \mathbf{x})$ into phrase verification $p_{\theta}(\mathbf{y} | \mathbf{z}, \mathbf{x})$

$$p_{\theta}(\mathbf{y} \,|\, \mathbf{x}) = \sum_{\mathbf{z}} p_{\theta}(\mathbf{y} \,|\, \mathbf{z}, \mathbf{x}) p(\mathbf{z} \,|\, \mathbf{x})$$

Decompose claim verification $p_{\theta}(\mathbf{y} | \mathbf{x})$ into phrase verification $p_{\theta}(\mathbf{y} | \mathbf{z}, \mathbf{x})$

$$p_{\theta}(\mathbf{y} \mid x) = \sum_{\mathbf{z}} p_{\theta}(\mathbf{y} \mid \mathbf{z}, x) p(\mathbf{z} \mid x)$$

Phrase veracity as latent variables

Decompose claim verification $p_{\theta}(\mathbf{y} | \mathbf{x})$ into phrase verification $p_{\theta}(\mathbf{y} | \mathbf{z}, \mathbf{x})$

$$p_{\theta}(\mathbf{y} \,|\, x) = \sum_{\mathbf{z}} p_{\theta}(\mathbf{y} \,|\, \mathbf{z}, x) p(\mathbf{z} \,|\, x)$$

- Variational inference for solving the latent model
 - Evidence Lower BOund (ELBO)

$$\text{ELBO} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{y},x)} [\log p_{\theta}(y^* | \mathbf{z}, x))] - D_{\text{KL}}(q_{\phi}(\mathbf{z} | \mathbf{y}, x) \parallel p(\mathbf{z} | x))$$

Decompose claim verification $p_{\theta}(\mathbf{y} | \mathbf{x})$ into phrase verification $p_{\theta}(\mathbf{y} | \mathbf{z}, \mathbf{x})$

$$p_{\theta}(\mathbf{y} \mid x) = \sum_{\mathbf{z}} p_{\theta}(\mathbf{y} \mid \mathbf{z}, x) p(\mathbf{z} \mid x)$$

- Variational inference for solving the latent model
 - Evidence Lower BOund (ELBO)

$$ELBO = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{y},x)} [\log p_{\theta}(y^*|\mathbf{z},x))] - D_{KL} q_{\phi}(\mathbf{z}|\mathbf{y},x) \| p(\mathbf{z}|x)]$$
Variational posterior
distribution
Variational posterior
$$\sum_{z_{f}}^{Variational posterior} prior distribution$$

Regularize Latent Variables with Logic

$$\mathcal{L}_{\text{var}}(\theta, \phi) = -\operatorname{ELBO} = -\operatorname{E}_{q_{\phi}(\mathbf{z}|\mathbf{y}, x)} [\log p_{\theta}(y^* | \mathbf{z}, x))] + D_{\text{KL}}(q_{\phi}(\mathbf{z} | \mathbf{y}, x) \parallel p(\mathbf{z} | x))$$
$$\mathcal{L}_{\text{final}}(\theta, \phi) = (1 - \lambda) \mathcal{L}_{\text{var}}(\theta, \phi) + \lambda \mathcal{L}_{\text{logic}}(\theta, \phi)$$
$$\mathcal{L}_{\text{logic}}(\theta, \phi) = D_{\text{KL}} \left(p_{\theta}(\mathbf{y} | \mathbf{z}, x) \parallel q_{\phi}^{\text{T}}(\mathbf{y}_{z} | \mathbf{y}, x) \right)$$

Regularize Latent Variables with Logic

 $\mathscr{L}_{\text{var}}(\theta, \phi) = -\operatorname{ELBO} = -\operatorname{E}_{q_{\phi}(\mathbf{z}|\mathbf{y}, x)} [\log p_{\theta}(y^* | \mathbf{z}, x))] + D_{\text{KL}}(q_{\phi}(\mathbf{z} | \mathbf{y}, x) \parallel p(\mathbf{z} | x))$ $\mathscr{L}_{\text{final}}(\theta,\phi) = (1-\lambda)\mathscr{L}_{\text{var}}(\theta,\phi) + \lambda \mathscr{L}_{\text{logic}}(\theta,\phi)$ $\mathscr{L}_{\text{logic}}(\theta, \phi) = D_{\text{KL}} \left(p_{\theta}(\mathbf{y} | \mathbf{z}, x) \parallel q_{\phi}^{\text{T}}(\mathbf{y}_{z} | \mathbf{y}, x) \right)$ • **Supported** iff all phrases $q_{\phi}^{\mathrm{T}}(oldsymbol{y}_{z}= extsf{SUP})=\prod_{i=1}^{|oldsymbol{z}|}q_{\phi}(oldsymbol{z}_{i}= extsf{SUP})$ found supported; Refuted iff exists a phrase $q_{\phi}^{\mathrm{T}}(\boldsymbol{y}_{z} = \mathtt{REF}) = 1 - \prod_{i=1}^{|\boldsymbol{z}|} (1 - q_{\phi}(\boldsymbol{z}_{i} = \mathtt{REF}))$ found refuted; $q_{\phi}^{\mathrm{T}}(oldsymbol{y}_{z} = \texttt{NEI}) = 1 - q_{\phi}^{\mathrm{T}}(oldsymbol{y}_{z} = \texttt{SUP}) - q_{\phi}^{\mathrm{T}}(oldsymbol{y}_{z} = \texttt{REF})$ • **NEI** iff not refuted and exists a phrase found unverifiable. Soft logic 27 Hard logic

 $p_{\theta}(\mathbf{y} \mid x, \mathbf{z})$

Iterative Decoding

1.
$$p(\mathbf{z})$$

2. $p_{\theta}(\mathbf{y} \mid x, \mathbf{z})$
3. $q_{\phi}(\mathbf{z} \mid \mathbf{y}, x)$
4. ...

Understanding LOREN

- RQ1: Can we find rationales without hurting verification performance?
- RQ2: How faithful and accurate are these unsupervised rationales?
- RQ3: How do local premises contribute to LOREN and its rationales?

Research Questions

- RQ1: Can we find rationales without hurting verification performance?
- RQ2: How faithful and accurate are these unsupervised rationales?
- RQ3: How do local premises contribute to LOREN and its rationales?

RQ1: Extrinsic Evaluation

Datacet	Model	Dev		Test	
Dataset			FEV	LA	I
• FEVER	UNC NLP GEAR (BERT,)	69.72 74.84	66.49 70.69	68.21 71.60	6
Metrics	DREAM (XLNet _{large})	79.16	-	<u>76.85</u>	7
• Label Accuracy (LA)	$egin{array}{c} KGAT \ (BERT_{\mathrm{large}}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	77.91 78.29	75.86 76.11	73.61 74.07	7 7
- Classification accuracy	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	- 78.44	- 76.21	75.96 74.43	7 7
• FEVER Score (FEV)	$(RoBERTa_{large})$	<u>81.14</u>	78.83	76.42	7
To the would option when the wight	LisT5 (T5 _{3B})	81.26	<u>77.75</u>	79.35	7

- Is the verification using the right

evidence sentence?

Table 2: Overall performance of verification results on the dev and blind test set of FEVER task, where FEV (FEVER score) is the main evaluation metric. The best is **bolded**, and the second best is underlined.

FEV 64.21 67.10

70.60 70.24 70.38 72.30 70.71 72.93 **75.87**

RQ1: Extrinsic Evaluation

Dataset	Model		Dev		Test	
			FEV	LA	FEV	
• FEVER	UNC NLP	69.72	66.49	68.21	64.21	
	$GEAR (BERT_{base})$	74.84	70.69	71.60	67.10	
Metrics	$DREAM~(XLNet_{\rm large})$	79.16	-	76.85	70.60	
Field inco	$KGAT (BERT_{large})$	77.91	75.86	73.61	70.24	
• Label Accuracy (LA)	$\ \ (RoBERTa_{large})$	78.29	76.11	74.07	70.38	
	$(CorefRoBERTa_1)$	-	-	75.96	72.30	
 Classification accuracy 	LOREN (BERT _{large})	78.44	76.21	74.43	70.71	
 FEVER Score (FEV) 	$\ \ (RoBERTa_{large})$	<u>81.14</u>	78.83	76.42	<u>72.93</u>	
 Is the verification using the right 						

Table 2: Overall performance of verification results on the dev and blind test set of FEVER task, where FEV (FEVER score) is the main evaluation metric. The best is **bolded**, and the second best is <u>underlined</u>.

Conclusions

- For similar-sized baselines with similar settings (DREAM, KGAT)
 - very competitive

evidence sentence?

RQ1: Extrinsic Evaluation

Metrics

- Label Accuracy (LA)
 - Classification accuracy
- FEVER Score (FEV)
 - Is the verification using the right *evidence sentence*?

Model	D	ev	Test		
	LA	FEV	LA	FEV	
UNC NLP	69.72	66.49	68.21	64.21	
GEAR (BERT _{base})	74.84	70.69	71.60	67.10	
DREAM (XLNet _{large})	79.16	-	76.85	70.60	
$KGAT (BERT_{large})$	77.91	75.86	73.61	70.24	
$(RoBERTa_{large})$	78.29	76.11	74.07	70.38	
$(CorefRoBERTa_1)$	_	_	75.96	72.30	
LOREN (BERT _{large})	78.44	76.21	74.43	70.71	
$(RoBERTa_{large})$	<u>81.14</u>	78.83	76.42	<u>72.93</u>	
LisT5 (T5 _{3B})	81.26	77.75	79.35	75.87	

Table 2: Overall performance of verification results on the dev and blind test set of FEVER task, where FEV (FEVER score) is the main evaluation metric. The best is **bolded**, and the second best is <u>underlined</u>.

Conclusions

- For similar-sized baselines with similar settings (DREAM, KGAT)
 - very competitive
- For the 10x larger baseline (LisT5)

RQ1: Intrinsic Evaluation

Conclusion

• Finding rationales does not hurt verification performance.

Research Questions

- RQ1: Can we find rationales without hurting verification performance?
- RQ2: How faithful and accurate are these unsupervised rationales?
- RQ3: How do local premises contribute to LOREN and its rationales?

Goals of interpretability

Accurate

⊚*Faithful

Oebuggable

Goals of interpretability

Metrics for evaluating rationales

Accurate

🎯 Faithful

Goals of interpretability

Metrics for evaluating rationales

Accurate
 Faithful

Debuggable

- Logically aggregated Label Accuracy of y_z (LA_z)
 - Evaluates the overall quality of z
- Culprit finding accuracy (CulpA) (P/R/F1)
 - Evaluates the individual quality of *z*:
 - Are the culprit phrase(s) found by rationales (z)?
 - Human evaluation: labeling culprit phrase(s) from claim phrases

Goals of interpretability

Metrics for evaluating rationales

- Logically aggregated Label Accuracy of y_z (LA_z)
 - Evaluates the *overall* quality of z
- Culprit finding accuracy (CulpA) (P/R/F1)
 - Evaluates the *individual* quality of *z*:
 - Are the culprit phrase(s) found by rationales (z)? (human evaluation)
- Agreement of LA and LA_z (AGREE)
 - How aggregated phrase veracity (y_z) agrees with claim veracity $(y)_z$

R2: Faithfulness of Rationales

$$\mathscr{L}_{\text{final}}(\theta,\phi) = (1-\lambda)\mathscr{L}_{\text{var}}(\theta,\phi) + \lambda\mathscr{L}_{\text{logic}}(\theta,\phi)$$

Conclusions

- Agreement > 96%: *z* are in general faithful.
- λ , Agree : stronger regularization from \mathscr{L}_{logic} , deciding the faithfulness of z.
- Soft > Hard: probability distributions of z gives more information than discrete labels.

R2: Overall Accuracy of Rationales

$$\mathcal{L}_{\text{final}}(\theta,\phi) = (1-\lambda)\mathcal{L}_{\text{var}}(\theta,\phi) + \lambda\mathcal{L}_{\text{logic}}(\theta,\phi)$$

Conclusions

- LA_z is close to 50% when $\lambda = 0$: Logic is *critical* for interpretability.
- λ_{1} , LA_{z} but quickly plateaued: stronger regularization from \mathscr{L}_{logic} does not affect performance much.

 An interpretability shortcut in the logic: predicting all phrase veracity to be the same as claim veracity. e.g., 1.REF v REF v REF = REF
 2.REF v SUP v NEI = REF

• Potential risks:

- Be tricked by the deceptively high overall accuracy LA_z
- Rationales being invalid, as no culprit is found.

 An interpretability shortcut in the logic: predicting all phrase veracity to be the same as claim veracity. e.g., 1.REF v REF v REF = REF
 2.REF v SUP v NEI = REF

• Potential risks:

- Be tricked by the deceptively high overall accuracy LA_z
- Rationales being invalid, as no culprit is found.

This can be revealed by altering the prior distribution $p(\mathbf{z} | x)$.

negative ELBO: $\mathscr{L}_{var}(\theta,\phi)$

 $-\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{y},x)} \left[\log p_{\theta}(y^*|\mathbf{z},x)\right] + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{y},x) \parallel p(\mathbf{z}|x))$

Table 4: Results of different choices of prior distribution p(z) during training, where y_z in LA_z is calculated using *soft* logic.

• A Pre-trained NLI from MNLI

• LA_z at 53.41% for the NLI model before training

	Choice of $p(z)$	LA	\mathbf{LA}_{z}	AGREE	CULPA (P/R/F1)
Sample a few	NLI prior	81.14	79.66	96.11	75.8/75.9/74.3
phrases to be 🔶	Pseudo prior	80.93	80.44	97.25	70.5/77.1/71.4
culprits as prior	Uniform prior	80.85	80.74	97.08	34.1/ 78.8 /46.1

Table 4: Results of different choices of prior distribution p(z) during training, where y_z in LA_z is calculated using *soft* logic.

Choice of $p(z)$	LA	\mathbf{LA}_{z}	AGREE	CULPA (P/R/F1)
NLI prior	81.14	79.66	96.11	75.8 /75.9/ 74.3
Pseudo prior	80.93	80.44	97.25	70.5/77.1/71.4
Uniform prior	80.85	80.74	97.08	34.1/ 78.8 /46.1

Table 4: Results of different choices of prior distribution p(z) during training, where y_z in LA_z is calculated using *soft* logic.

Conclusions

- Prior distribution sets an important starting point for learning the rationales (z), but not on the overall predictions.
- NLI prior and pseudo prior can prevent the degeneration of phrase verification

Research Questions

- RQ1: Can we find rationales without hurting verification performance?
- RQ2: How faithful and accurate are these unsupervised rationales?
- RQ3: How do local premises contribute to LOREN and its rationales?

RQ3: Extrinsic Evaluation — MRC Performance

• Randomly sample 238 cases for Manual evaluation.

RQ3: Extrinsic Evaluation — MRC Performance

• Randomly sample 238 cases for Manual evaluation.

Conclusions

- Self-supervised training for MRC is very beneficial for answering probing questions.
- Automatic factual error correction?

RQ3: Intrinsic Evaluation — Simulating MRC deficiency

• What if MRC fails? — Masking local premises.

Figure 2: Performance on culprit finding (CULPA) and verification (LA and LA_z) vs. the mask rate ρ of local premises, simulating the influence by deficiency of the MRC model.

Conclusions

- MRC is critical for the quality of individual rationales.
- Phrase verification degenerates to claim verification as MRC deteriorates.

Research Questions Revisited

• RQ1: Can we find rationales without hurting verification performance?

- Yes, even with a little boost for some cases.

RQ2: How faithful and accurate are these unsupervised rationales?

- Very faithful (96%+ agreement) and accurate (both in overall and individually).
- Logic regularizes the quality of phrase veracity.
- Careful for the "interpretability shortcut".

• RQ3: How do local premises contribute to LOREN and its rationales?

- Minor contribution to claim veracity prediction.
- Critical to the quality of phrase veracity prediction.

Claim2: Ashley Cole is Iranian.

Evidence: Ashley Cole (born 20 December 1980) is an English professional footballer who ... in Major League Soccer. Born in Stepney , London...

Claim2: Ashley Cole is Iranian.

Evidence: Ashley Cole (born 20 December 1980) is an English professional footballer who ... in Major League Soccer. Born in Stepney , London...

Premise1: Ashley Cole is Iranian.

Premise2: Ashley Cole is European.

Claim2: Ashley Cole is Iranian. Evidence: Ashley Cole (born 20 December 1980) is an English professional footballer who in Major League Soccer. Born in Stepney , London				
Premise1: Ashley Cole is Iranian. Veracity: SUPPORTS Premise2: Ashley Cole is European	z ₁ = [0.981 , 0.004, 0.015]			
Veracity: REFUTES	z ₂ = [0.014, <mark>0.520</mark> , 0.466]			
Prediction <i>y</i> : REFUTES	y _z = [0.014, <mark>0.522</mark> , 0.464]			

Claim2: Ashley Cole is Iranian. Evidence: Ashley Cole (born 20 December 1980) is an English professional footballer who in Major League Soccer. Born in Stepney , London				
Premise1: Ashley Cole is Iranian. Veracity: SUPPORTS Premise2: Ashley Cole is European. Veracity: REFUTES	z ₁ = [0.981 , 0.004, 0.015] z ₂ = [0.014, 0.520 , 0.466]			
Prediction <i>y</i> : REFUTES Ground Truth: NOT ENOUGH INFO	y _z = [0.014, <mark>0.522</mark> , 0.464]			

- Wrong verification for Iranian.
- Rather close probabilities of **REF** and **NEI**.

-
$$z_2$$
: $p_{\text{REF}} = 0.520 \text{ vs.} p_{\text{REF}} = 0.466$

-
$$y_z$$
: $p_{\text{REF}} = 0.522$ vs. $p_{\text{REF}} = 0.464$

- Goal of Reasoning
 - correct answer for the right thinking
- A good pipeline (LOREN) offers interpretability to the prediction
 - Faithful, accurate and debuggable
- A reasoning paradigm: symbolic AI plans, connectionist AI executes.

– Planning with logic, learning with data

Have Fun with LOREN!

Checkout our code at **GitHub**! <u>https://github.com/jiangjiechen/LOREN</u>

Checkout our demo at 🤐 **Spaces**!

<u>https://huggingface.co/spaces/Jiangjie/</u> <u>loren-fact-checking</u>