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Relation Extraction

Britain ’s Prince Harry is engaged to his US partner Meghan Markle.

Sentence-level RE

royalty of engaged to
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Relation Extraction

Britain ’s Prince Harry is engaged to his US partner Meghan Markle.

Sentence-level RE

simple intra-sentence semantics
(around 20 tokens per sentence)

fewer involved entities 
(2~3 on average) and 
relations (0~2 on 
average)

royalty of engaged to
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Relation Extraction
Document-level RE

Britain ’s Prince Harry is engaged to his US partner 
Meghan Markle. …

Harry spent 10 years in the army and has this year, with 
his elderly brother William, …

The last major royal wedding took place in 2011, when 
Kate Middleton and Prince William were married. …

royalty of

royalty of

spouse of

sibling of
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Relation Extraction
Document-level RE

Britain ’s Prince Harry is engaged to his US partner 
Meghan Markle. …

Harry spent 10 years in the army and has this year, with 
his elderly brother William, …

The last major royal wedding took place in 2011, when 
Kate Middleton and Prince William were married. …

Longer context (hundreds 
of tokens) between entity 
mentions that may 
describe specific relations

More entities (around 
20) and relations (>10 
on average)

royalty of

royalty of

spouse of

sibling of
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Main Challenges
• Long-range dependencies

Britain ’s Prince Harry is engaged to his US 
partner Meghan Markle. …

Harry spent 10 years in the army and has 
this year, with his elderly brother William, …

The last major royal wedding took place in 
2011, when Kate Middleton and Prince 
William were married. …
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Main Challenges
• Complex interactions

Britain

Harry

William
Kate

Meghan

royalty of

royalty of royalty of

spouse of

sibling of

engaged to

An extracted subgraph from the previous document.
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Existing Methods
• Sequence-based Approaches

– Average pooling (e.g. DocRED (Yao et al., 2019)), Attentive pooling (e.g. 
ATLOP (Zhou et al., 2021)), …

Figure from BERT (Devlin et al. 2018)

Pooler

Encoded 
document



9

Existing Methods

Figure from GAIN (Zeng et al. 2020)

• Graph-based Approaches
– e.g. EoG (Christopoulou et al. 2019), GLRE (Wang et al., 2020), GAIN 

(Zeng et al., 2020)

Graphs connecting 
sentences, mentions 
and entities
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Weaknesses of Prior Works
• Implicit long-range dependencies

– PLMs encoding (suffers the difficulty on capturing long-range semantics)
– Graph construction (depends on hand-crafted rules and contains only 

coarse granularity low-level information. )

• Implicit interactions modeling
– features for interactions modeling, ignoring the explicit logical constraints 

among relations

• Poor Interpretability
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LogiRE
• Strength of logic rules

– Explicitly capturing long-
range dependencies

– Exhibiting interpretability

• Combining logic rules 
with neural network
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LogiRE
• Strength of logic rules

– Explicitly capturing long-
range dependencies

– Exhibiting interpretability

• Combining logic rules 
with neural network

The solid arc relation can 
be deducted from the other 
three dashed arc relations 
in concept level.
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Logic Rules
Logic Rule

entity set predefined relations
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Logic Rules
Logic Rule

entity set predefined relations

e.g. transferability:
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Logic Rules
Logic Rule

Instantiated Path

entity set predefined relations

Note: the direct relation 𝑟 from ℎ to 𝑡 can be depicted by a 
path with intermediate entities and relations included. 

𝑟

e.g. transferability:
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Framework Overview
• Treat logic rules as 

latent variable z
• Rule Generator

– generates rules for 
the relation extractor

• Relation Extractor
– predicts relations give 

queries and logic 
rules

– provides supervision 
signals for the rule 
generator to produce 
high-quality rules 

• EM Optimization
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Framework Overview
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latent variable z
• Rule Generator

– generates rules for 
the relation extractor
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– predicts relations give 

queries and logic 
rules

– provides supervision 
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Rule Generator
• Following RNNLogic (Qu et al. 2021), the latent variable 𝑧 is defined as a 

multi-set containing multiple rules
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Rule Generator
• Following RNNLogic (Qu et al. 2021), the latent variable 𝑧 is defined as a 

multi-set containing multiple rules

AutoReg

𝑞 𝑟" 𝑟# 𝑟$%"

𝑟" 𝑟# 𝑟& 𝑟$

…

…
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Relation Extractor
• Backbone model: initial probabilistic assessment on a triple 
• Rule scorer: logic fusion over all instantiated paths of rules
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Relation Extractor
• Backbone model: initial probabilistic assessment on a triple 
• Rule scorer: logic fusion over all instantiated paths of rules

probability assessment on the triple 
𝑒'%", 𝑟', 𝑒' by the backbone model

dynamic programming
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Relation Extractor
• Backbone model: initial probabilistic assessment on a triple 
• Rule scorer: logic fusion over all instantiated paths of rules

probability assessment on the triple 
𝑒'%", 𝑟', 𝑒' by the backbone model

dynamic programming

fuzzy logic for 
disjunction over all 
conjunctive rules
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Optimization (EM)
• E-step: exact posterior inference → approximated posterior
• M-step: maximize lower bound

𝑞(𝒛) is the 
approximated 
posterior of the 
latent rule set



(details)

• Prior distribution:

• Posterior
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Posterior Approximation
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• Prior distribution:

• Posterior
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Posterior Approximation

order-2 Taylor expansion



(details)

• Prior distribution:

• Approximated Posterior
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Posterior Approximation

conjugate 
distributions



(details)

• Prior distribution:

• Approximated Posterior
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Posterior Approximation

conjugate 
distributions

🤗 conjugate property → easier optimization



(details)

• E-step
– Obtain the approximated posterior
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Iterative Optimization

Approximated posterior of the rule set
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Iterative Optimization

Approximated posterior of the rule set

Approximated posterior of each rule



(details)

• E-step
– Obtain the approximated posterior
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Iterative Optimization
• M-step

– Optimize the parameters

Rule Generator Relation Extractor
Approximated posterior of the rule set

Approximated posterior of each rule



(details)

• E-step
– Obtain the approximated posterior
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Iterative Optimization
• M-step

– Optimize the parameters

Rule Generator Relation Extractor

equivalence ensured by 
the conjugate property

Approximated posterior of the rule set

Approximated posterior of each rule
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High Performance & Logical Consistency
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Good Long-range Dependencies Modeling

The absolute performance of both models decreases as the entity pair 
distances increase.
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Good Long-range Dependencies Modeling
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The absolute performance of both models decreases as the entity pair 
distances increase. The gap between them, however, increases.
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More Interpretability & Transparency

𝑒( 𝑒" 𝑒#
played by plays in

character in

𝑒( 𝑒" 𝑒#
citizen of

minister of in0

𝑒( 𝑒" 𝑒#
parent of royalty of

royalty of

child of

spouse of

Rule patterns extracted 
from the well trained rule 
generator.

Blue arcs are deducted 
from the intermediate 
entities and relations.
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Gain Analysis
The improvements on 
DocRED are less significant 
than those on DWIE.
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Gain Analysis
The improvements on 
DocRED are less significant 
than those on DWIE.

Logical inconsistency in annotations
shorter dependencies
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Summary
• Conclusion

– Logic rules + NN → doc-level RE
– Iterative EM optimization for latent rules
– Better long-range dependencies modeling and logical consistency
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Summary
• Conclusion

– Logic rules + NN → doc-level RE
– Iterative EM optimization for latent rules
– Better long-range dependencies modeling and logical consistency

• Future directions for doc-level RE
– Learning with noisy data 
– Global decoding for doc-level RE
– Zero-shot / few-shot meta relation induction and learning
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Thanks!

Repo Link


