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Free-form gesture understanding is highly appealing for human-computer interaction, as it liberates users from the constraints 
of predefined gesture categories. However, the sole existing solution—GestureGPT—suffers from limited recognition accuracy 
and slow response times. In this paper, we propose Gestura, an end-to-end system for free-form gesture understanding. Gestura 
harnesses a pre-trained Large Vision-Language Model (LVLM) to align the highly dynamic and diverse patterns of free-form 
gestures with high-level semantic concepts. To better capture subtle hand movements across different styles, we introduce a 
Landmark Processing Module that compensate for LVLMs’ lack of fine-grained domain knowledge by embedding anatomical 
hand priors. Further, a Chain-of-Thought (CoT) reasoning strategy enables step-by-step semantic inference, transforming 
shallow knowledge into deep semantic understanding and significantly enhancing the model’s ability to interpret ambiguous 
or unconventional gestures. Together, these components allow Gestura to achieve robust and adaptable free-form gesture 
comprehension. Additionally, we have developed the first open-source dataset for free-form gesture intention reasoning 
and understanding with over 300,000 annotated QA pairs. Experimental results show that Gestura achieves the accuracy of 
84.73% (closed-set) / 64.14% (open-set) in the exocentric (third-person) setting and 66.14% (closed-set) / 21.71% (open-set) in the 
egocentric (first-person) setting, achieving approximately 20% and 40% higher accuracy on closed-set and open-set tasks, 
respectively, compared to GestureGPT. Moreover, Gestura achieves over a 100× speedup in response time (1.6 seconds vs. 
227 seconds) on an 8B-sized model deployed on a single NVIDIA A100 40GB GPU, and has been validated through real-device 
experiments with an edge–cloud collaborative setup, bringing free-form gesture understanding markedly closer to practical, 
real-world deployment. Both the dataset and code about the project can be accessed at https://evans-lx.github.io/Gestura/.
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CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools; • Information 
systems → Language models.
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Model, Multi-Modal
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1 INTRODUCTION

Gesture-based interaction serves as a critical interface for wearable devices such as smart glasses [7, 33, 45], 
enabling intuitive human-device communication. However, real-world deployment faces a significant challenge: 
spontaneous gesture understanding in open-world environments. As these devices become more pervasive in 
daily life, users expect to interact naturally—using spontaneous, personalized gestures instead of memorizing 
predefined commands. This shift demands gesture recognition systems that are not only accurate but also 
adaptable to individual styles, cultural variations, and situational context. Unlike controlled settings, users exhibit 
diverse, context-driven gestures that carry implicit intentions, demanding systems capable of parsing both motion 
patterns and latent semantics. Traditional approaches relying on predefined gesture l ibraries or specialized 
hardware (e.g., gloves, depth sensors) fail to address this complexity, creating barriers to natural interaction and 
scalability.

Current gesture recognition methods fall into two categories. i.e., 1) Conventional deep learning methods (e.g., 
CNNs, LSTMs) excel at classifying fixed gesture vocabularies, but lack semantic reasoning to infer intentions 
from novel motions. 2) Emerging Large Language Models (LLMs) such as GestureGPT [44], though attempting 
open-world interpretation, face dual constraints: Firstly, they depend on intensive computational resources 
and introduce significant latency, which hinders real-world deployment; more critically, existing LLMs lack 
understanding of fine-grained hand dynamic, which fundamentally limits their capacity to capture nuanced 
gestural semantics. This presents a crucial research challenge: how to adaptively integrate fine-grained motion 
cues with general reasoning capabilities to effectively bridge low-level motion tracking and high-level intent 
inference. This integration constitutes a critical pathway for free-form gesture understanding.

To address this challenge, we turn to Large Vision-Language Models (LVLMs)—an emerging extension of LLMs 
that incorporate both visual and textual modalities. While early LLMs were limited to text-only inputs, recent 
advances have enabled them to process images and videos through aligned visual encoders and MLP projector. 
These LVLMs retain the strong reasoning capabilities of LLMs, while gaining the capacity to perceive complex 
visual contexts.

This paper explores a novel synergy: leveraging robust hand landmark priors to "teach" a LVLM to resolve 
ambiguities in free-form gesture understanding. Our key insight is that while traditional hand keypoint detection 
models offer geometrically accurate but semantically shallow representations, they can provide crucial contextual 
information to LVLM that lack domain-specific knowledge but possess strong reasoning abilities. Our framework 
enables kinematic precision to inform contextual semantics through innovative cross-modal interaction.

Specifically, we propose a hierarchical framework centered around two tightly integrated components: (1) 
a Landmark Processing Module, which incorporates hand keypoint information extracted from MediaPipe [24] 
to enrich visual features with anatomical structure and spatial cues—crucial for distinguishing subtle gesture 
variations; (2) a LVLM backbone that employs a dual-stream encoder and a large language model to align dynamic 
visual features with high-level semantic concepts, enabling robust intent inference beyond superficial motion 
patterns; and a two-stage training paradigm: First, Gestura learns general visual-semantic mappings through
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a multi-view semantic enhancement strategy to activate the model’s potential for free-form generalization.
Subsequently, in Stage 2, Gestura leverages a well-trained landmark processing module to transmit anatomical
and spatial contextual signals to the LVLM backbone. Meanwhile, it internalizes advanced reasoning capabilities
through Chain-of-Thought (CoT) tuning. This enables Gestura to push the model’s reasoning limits in open-world
scenarios and achieve superior generalization.

To evaluate the effectiveness of our model, we conducted comprehensive experiments across both benchmark
and real-world scenarios. Specifically, Gestura achieves a top-1 intent accuracy of 84.73% in the exocentric view
and 66.14% in the egocentric view, substantially outperforming the previous state-of-the-art, GestureGPT, which
achieves 72.08% (closed-set) / 44.46% (open-set) and 40.07% (closed-set) / 17.38% (open-set) under the corresponding
settings. This highlights a significant advancement in accurate gesture intent interpretation, particularly under
the challenging egocentric perspective. Moreover, on gesture description tasks, Gestura also demonstrates a
substantial improvement: achieving BLEU-4 scores of 49.83 (exocentric, closed-set) and 43.67 (egocentric, closed-
set), compared to GestureGPT’s 15.05 and 10.75, respectively—representing over 3× higher description quality.
Even under open-set conditions, Gestura maintains strong performance, with BLEU-4 scores of 14.17 (exocentric)
and 9.93 (egocentric), further validating its robustness in free-form gesture understanding. The relatively lower
open-set accuracy in the egocentric setting can be attributed to the smaller scale of egocentric data compared to
exocentric data in our dataset, which limits the model’s ability to generalize to novel gestures from first-person
perspectives. Beyond benchmarks, we deployed Gestura in practical egocentric smart home settings, where it
reached a top-5 accuracy of 69.23% across eight free-form intent categories, proving its robustness to gesture
variability and its suitability for real-time, context-aware human-computer interaction. Notably, the average
response time in real-device experiment settings is 7.83 seconds, including communication and TTS latency,
while pure model inference takes only 1.6 seconds—significantly faster than prior models like GestureGPT (227
seconds)—making Gestura highly efficient for interactive applications.
Our contributions can be summarized as follows:

(1) A novel dataset for free-form gesture intent understanding:We present a pioneering dataset that
redefines gesture data through a question-answering (QA) paradigm, specifically designed for free-form,
user-defined gestures. Unlike traditional datasets constrained by fixed vocabularies, ours captures the
diversity of real-world gestures by including rich annotations at three levels: action description, gesture
meaning, and contextual intent. This enables robust benchmarking for intent reasoning under open-world
conditions.

(2) A LVLM-based inference architecture tailored for free-form gesture comprehension: We extend a
LVLM to support fine-grained gesture reasoning by aligning motion patterns with latent semantics. Our
architecture bridges low-level visual encoding and high-level intention inference, allowing it to generalize
across unseen gestures. Crucially, our system achieves this while maintaining real-time performance (7.83 s
per gesture), making it possible for deployment in wearable and edge-computing scenarios.

(3) Semantic grounding through anatomical priors: To better differentiate between various hand gestures,
we utilize Mediapipe as an auxiliary tool by integrating the gesture ground truth detected by Mediapipe
with video data. This approach proves beneficial in distinguishing similar gestures, particularly those
with visually similar features. In essence, our idea is to leverage the prior knowledge of a specialized
gesture recognition model to enhance the understanding of gestures by our language model (LM). This
fusion enables the LM to interpret gestures more accurately, facilitating the model to better distinguish
fine-grained differences between different gestures.
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Fig. 1. Overview of the proposed framework of Gestura. Gestura introduces a hierarchical framework with two-phase training

for free-form gesture understanding. First, the pre-training stage activates the model’s potential for free-form generalization

by using a multi-view semantic enhancement strategy. In Stage 2, Gestura leverages well-trained landmark processing

module to deliver anatomical and spatial contextual signals to the LVLM backbone, while internalizing advanced reasoning

capabilities through Chain-of-Thought (CoT) tuning. This dual mechanism expands the model’s reasoning boundaries,

enabling superior generalization in free-form gesture understanding.

2 RELATED WORK

Gesture recognition has garnered significant attention in both human-computer interaction (HCI) and human-
robot interaction (HRI) domains [5, 32]. Recent advances in hand gesture recognition, particularly in dynamic
settings, have leveraged different techniques and data modalities such as RGB images, depth sensors, and 3D
skeleton-based data [20, 28]. The use of 3D hand skeleton data, particularly hand landmarks, has become an
important aspect of gesture recognition due to its robustness and ability to capture rich spatial-temporal features.
Many systems rely on spatial-temporal attention mechanisms to model dependencies between hand joints, making
them effective for real-time recognition tasks.

In recent years, significant progress has been made in dynamic hand gesture recognition (DHGR) using deep
learning models such as convolutional neural networks (CNNs) [2, 39], graph-based neural networks, and long
short-term memory (LSTM) networks [34]. For instance, graph-based architectures have been proposed to better
handle the spatial and temporal dependencies between joints for improved performance on skeleton-based
hand gesture datasets, such as SHREC’17 [35], achieving high accuracy in recognizing complex gestures. These
approaches focus on extracting spatial-temporal attention features to capture joint dependencies, allowing for
real-time and efficient gesture recognition.

More recently, the emergence of large-scale pre-trained models—particularly transformer-based architectures
has further propelled the development of HCI and gesture recognition systems [15, 16, 38, 43]. These models,
originally popularized in natural language processing, have demonstrated remarkable capacity in capturing
long-range dependencies and multi-level abstractions, making them highly suitable for tasks involving sequential
and multi-dimensional inputs, such as gesture sequences. Vision Transformers [10], for example, have been
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adapted to process RGB frames or skeletal heatmaps [21], showing competitive performance in modeling global
gesture contexts.
At the same time, the growing integration of wearable devices and ubiquitous computing technologies has

significantly enhanced gesture recognition capabilities [13, 37, 41]. Wearables such as smart glasses, motion
sensors, and inertial measurement units (IMUs) provide continuous, fine-grained motion data that complements
traditional visual modalities [14]. These devices enable gesture recognition systems to operate in unconstrained
environments with improved responsiveness and contextual awareness. When combined with transformer-based
models, the rich multimodal signals from wearable platforms can be effectively aligned and interpreted, paving
the way for more natural, adaptive, and personalized interaction experiences across a wide range of real-world
applications.
However, while significant advancements have been made in recognizing predefined gestures, most existing

systems require users to learn and perform gestures from a fixed set, which can result in a less natural interaction
experience. Recent work, such as GestureGPT, proposes a solution for free-form gesture recognition by enabling
automatic understanding of spontaneous gestures. This approach eliminates the need for users to learn predefined
gestures, allowing for intuitive interaction without explicit training. GestureGPT utilizes LLM to interpret hand
gestures from natural language descriptions, mapping them directly to interface functions, thus overcoming the
rigid nature of traditional gesture recognition systems. The framework achieves strong performance in zero-shot
gesture recognition.

Moreover, a recent exploration into Zero-Shot Learning (ZSL) for dynamic hand gesture recognition proposes a
novel multi-modal ZSL framework [34]. This method combines deep learning based features with skeleton-based
representations to perform gesture recognition without annotated data. By leveraging transformer models and
BERT-based semantic mapping, the system achieves significant performance improvements in recognizing hand
gestures without requiring specific gesture annotations. This approach is particularly relevant when handling
open-world tasks where the gesture set is not fixed, and new gesture categories need to be recognized on the fly.

In the realm of open-world gesture recognition, methods have also been proposed to tackle the challenges of
catastrophic forgetting and incremental learning [36]. The work on Data-Free Class-Incremental Learning [1]
introduces a method for dynamic hand gesture recognition that doesn’t require access to previously seen data,
making it suitable for real-world applications where privacy constraints prevent data storage. By employing a
boundary-aware prototypical sampling mechanism, the approach improves model inversion and recognition
performance without compromising on accuracy or computational efficiency. This method demonstrates its
effectiveness in 3D skeleton gesture recognition by addressing both the challenges of incrementally adding new
gestures and avoiding performance degradation on old gestures.

Additionally, the synthesis of stylized gestures for human-robot interaction has gained attention, with systems
like GestureDiffuCLIP [3] offering a flexible control mechanism for generating gestures with varying levels of
style. By using the CLIP model for style conditioning and a latent diffusion model for gesture generation, this
framework allows for high-quality stylized gestures tailored to different interactive scenarios. While this research
focuses on synthesizing co-speech gestures, its underlying mechanism for gesture generation and style control
could be beneficial in the context of interactive gesture recognition systems, where natural and intuitive user
interactions are crucial.

Together, these studies contribute to the growing body of work on dynamic and free-form gesture recognition.
They highlight the challenges in achieving real-time performance, maintaining model generalizability, and
adapting to open-world environments [12]. Our work contributes a unified framework that leverages structured
hand landmark priors to enhance the semantic reasoning capabilities of LVLM, achieving fine-grained and
interpretable recognition of free-form gestures in open-world scenarios through hierarchical alignment and
progressive training.
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3 APPROACH

3.1 Overview

Our framework introduces a hierarchical approach for gesture understanding, combining landmark-enhanced
visual processing, cross-modal alignment, and progressive training strategies to bridge gesture dynamics with
semantic intent.
Landmark Processing Module augments raw video features with structural hand keypoints extracted via

MediaPipe. By encoding spatial relationships between 21 hand landmarks, it enriches visual representations with
geometric cues, enabling finer distinction between subtle gesture variations.
LVLM integrates a dual-stream video encoder (capturing static poses and dynamic motions) with a MLP

projector that maps visual features into a shared language space. A LLM then understand these features, leveraging
its reasoning capabilities to infer gesture meanings beyond surface-level motions.
Training Pipeline follows a two-stage paradigm:
Stage 1.In the initial pre-training stage, we freeze the parameters of the video encoder and the LLM and

introduce a trainable MLP projector that serves as a bridge, aligning video features with textual captions. The
reason of freezing the parameters of the video encoder is to preserve its spatiotemporal pattern recognition
capabilities. This design is motivated by a deep understanding of gestural motion regularities—such as the
rhythm of waving or the trajectory of finger flexion—which are fundamental and transferable across tasks.
Direct fine-tuning could risk disrupting these fine-grained motion representations. Holding the LLM weights
fixed prevent premature drift, so the model first learns a clean alignment between vision tokens and the LLM’s
embedding space. This stabilises autoregressive convergence and lays a solid cross-modal foundation[19, 23].
The relevant ablation experiments could be seen in Appendix B.

Specifically, the MLP is trained to map different semantic expressions of the same gesture sample into a shared
embedding space while pushing apart unrelated gestures. To enable such fine-grained alignment, we adopt a
multi-view semantic enhancement strategy: (1) Motion Description (e.g., “palm extended”), (2) Gesture Semantics
(e.g., “inviting”), and (3) Intent Inference (e.g., “beckon”). This hierarchical structure guides the model in learning
layered representations and decoupling low-level motion patterns from high-level semantics.

Stage 2.Once the model has acquired a baseline capacity for semantic alignment, the second stage focuses on
resolving ambiguity between gestures with similar meanings or similar appearances in open-world scenarios.
Here, MediaPipe landmark features are introduced and integrated via an anatomically constrained attention
mechanism. This dynamic feature selection allows the model to distinguish between confusable gestures based
on subtle joint angle variations and coherent motions.

Furthermore, the incorporation of Chain-of-Thought (CoT) tuning breaks the limitations of traditional end-to-
endmodels by explicitly decomposing the reasoning process into a structured sequence: gesture description→semantic
analogy→ intent hypothesis→ final decision. This enforces logical traceability and encourages the model to
form robust associations rather than overfitting to surface-level patterns. As a result, the model achieves improved
accuracy in open-ended scenarios and gains interpretability through intermediate reasoning steps.
This two-stage framework mirrors the biological plausibility of human cognition. Just as humans build a

repertoire of motion patterns through repeated observation (analogous to Stage 1: pattern recognition), and then
infer intent by incorporating contextual cues (analogous to Stage 2: semantic reasoning), our system enables a
qualitative leap from motion decoding to cognitive-level interpretation. In this process, MediaPipe landmarks
act as a form of “proprioception”—providing the model with physical constraints akin to the human sense of
joint position—while CoT-based reasoning simulates expert-like inference grounded in domain knowledge (e.g.,
anatomical constraints on elbow movement), enabling more accurate intent disambiguation.
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3.2 Landmark Processing Module

Fig. 2. The process of deriving encoded features from hand video data. [R1, R4] A. Raw RGB frame→ B. 21 MediaPipe

landmarks→ C. One landmark triplet (red) case from the 1,330 possible→ D. Measure the enclosed angle. Blue circles mark

the 21 hand landmarks detected by MediaPipe. One triplet of landmarks (red) is chosen out of the

(21
3
)
= 1,330 possible

combinations each time to form two vectors whose enclosed angle 𝛼 is measured. The cosine of this angle constitutes a

single element of the final feature vector.

Considering that merely encoding videos through a video encoder is insufficient for the LLM to effectively
distinguish the subtle differences in vision features between similar gestures, we have added ground information
extracted by Mediapipe to the original vision features. The ground information here refers to the 21 key points of
the hand extracted by Mediapipe, with each key point represented by its x, y, and z spatial positions.

For each gesture frame, 𝑛 keypoints 𝑝1, 𝑝2, . . . , 𝑝𝑛 are extracted, where 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ). Derived features include
pairwise distances:

𝑑𝑖 𝑗 = ∥𝑝𝑖 − 𝑝 𝑗 ∥2 =
√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2 + (𝑧𝑖 − 𝑧 𝑗 )2

and angles between keypoints:

𝜃𝑖 𝑗𝑘 = cos−1
( (𝑝 𝑗 − 𝑝𝑖 ) · (𝑝𝑘 − 𝑝𝑖 )

𝑑𝑖 𝑗𝑑𝑖𝑘

)
which is treated as the ground truth feature.

To prevent the scale differences between videos from affecting the ground information, we chose to use the
cosine values formed by every three points as the final ground feature. Among the 1,330 possible combinations
of selecting three points from the 21 key points, we used only 1,024 combinations for feature extraction to
facilitate subsequent concatenation with vision features. This is because selecting any three points from the hand
keypoints results in a total of 1,330 combinations. Considering that the hidden dimension of the vision token
is 1,024, and for ease of concatenation, we chose the first 1,024 combinations to compute the cosine similarity
values, which are used as the hidden dimension for the landmark tokens. To avoid distortion of the encoded
features, we refrained from selecting all combinations and mapping them to 1,024. Since 1,024 combinations
cover nearly all possibilities, we selected the first 1,024 combinations for the hands in all frames, ensuring that
the features remain intact and consistent.

After adding the ground information, the number of feature tokens corresponding to each frame increased from
257 to 258, enriching the feature representation of gesture videos. The more comprehensive feature representation
enables the model to better distinguish fine-grained differences between different gestures.
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3.3 Large Vision Language Model

Fig. 3. Score rating and comparison of answers with and without CoT tuning. Certain portions of the generated output are 
highlighted to underscore their critical role in the inference process leading to the final answer.

To align gesture videos with their textual descriptions, we employ a video encoder that captures both static hand 
poses and dynamic motion patterns, ensuring comprehensive spatial-temporal representations. These gesture 
features are then projected into a shared semantic space using an MLP projector. In parallel, gesture-related 
text is tokenized into structured tokens. Both visual and textual embeddings are fed into an LLM, leveraging its 
reasoning and contextual understanding to bridge motion and semantics—allowing the model to infer gesture 
intent beyond surface-level motion.

3.4 Training Pipeline
3.4.1 STAGE 1: Multi-view Semantic Enhancement. In the pre-training stage, we align gesture video features 
with textual representations in a unified feature space. The video encoder extracts both static spatial features 
and dynamic motion patterns from gesture videos, which are then transformed by a trainable MLP projector. 
The video encoder remains frozen, ensuring that its pre-trained weights are preserved, while the MLP projector 
adapts the video features optimally.
The raw video feature vector from the frozen video encoder is denoted as v ∈ R𝑑𝑣 . The MLP projector

transforms this into the unified feature space as:

z = 𝑊3
𝑑𝑧×𝑑ℎ

· GELU
(
𝑊2

𝑑ℎ×𝑑ℎ
· GELU

(
𝑊1

𝑑ℎ×𝑑𝑣
v + b1

)
+ b2

)
+ b3 (1)

where:
• v ∈ R𝑑𝑣 : Input video features
• 𝑊1 ∈ R𝑑ℎ×𝑑𝑣 , b1 ∈ R𝑑ℎ : First layer parameters
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• 𝑊2 ∈ R𝑑ℎ×𝑑ℎ , b2 ∈ R𝑑ℎ : Hidden layer parameters
• 𝑊3 ∈ R𝑑𝑧×𝑑ℎ , b3 ∈ R𝑑𝑧 : Output layer parameters
• GELU: Gaussian Error Linear Unit activation
• z ∈ R𝑑𝑧 : Projected output features

To improve semantic alignment, we employ a multi-view semantic enhancement strategy, analyzing gestures
from three distinct perspectives before passing them into theMLP projector. This process refines the representation
by capturing nuanced aspects of gesture execution. The resulting video tokens, together with text tokens obtained
via a tokenizer, are then fed into a frozen LLM. By maintaining a shared latent space and freezing the LLM
parameters, we preserve its strong language reasoning capabilities while enabling the MLP projector to bridge the
modality gap between vision and text. Stage 1 relies on a curated subset of approximately 400 000 question–answer
pairs paired with 160 000 videos to establish robust descriptive and semantic grounding

The resulting video tokens, combined with text tokens from a tokenizer, are input into a frozen LLM. Freezing
the LLM preserves its language reasoning capabilities, while the MLP projector bridges the vision-text modality
gap.

Algorithm 1Multi-view Semantic Enhancement (Pre-training)
Require: video datasetV with three dimension annotation, pretrained VideoEncoder 𝑓video, LLM, epochs 𝐸1,

batch size 𝐵
Ensure: trained MLP projector 𝑃proj
1: initialize 𝑃proj parameters {𝑊1, 𝑏1,𝑊2, 𝑏2,𝑊3, 𝑏3}
2: freeze VideoEncoder, freeze LLM
3: for 𝑒 = 1 to 𝐸1 do
4: for each batch {𝑣𝑖 }𝐵𝑖=1 fromV1 do
5: 𝑣raw ← 𝑓video (𝑣𝑖 )
6: views← generate_three_views(𝑣𝑖 )
7: z_views← ∅
8: for each 𝑣𝑖𝑒𝑤 in views do
9: 𝑣view ← 𝑓video (𝑣𝑖𝑒𝑤)
10: ℎ1 ← GELU(𝑊1 𝑣view + 𝑏1)
11: ℎ2 ← GELU(𝑊2 ℎ1 + 𝑏2)
12: 𝑧view ←𝑊3 ℎ2 + 𝑏3
13: append 𝑧view to z_views
14: end for
15: 𝑧video ← combine(z_views)
16: tokens_text← LLM.tokenize(𝑡𝑖 )
17: tokens_video← map_to_embeddings(𝑧video)
18: logits← LLM.forward(tokens_video ∥ tokens_text)
19: loss← AlignmentLoss(logits, tokens_text)
20: loss.backward()
21: optimizer.step(); optimizer.zero_grad()
22: end for
23: end for
24: return 𝑃proj
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3.4.2 STAGE 2: Cross-modal Interaction with CoT Tuning. During pre-training with individually separated 
ques-tions, we observed strong performance on closed-world test data but significant drops in accuracy under 
open-world scenarios. To address this issue, we aim to equip the model with the ability to reason from 
gesture descriptions to their intended meanings. We modified the system prompt to encourage causal 
reasoning across gesture, context, and interpretation while fine-tuned the model using the CoT-formed data to 
cultivate a habit of chain-of-thought style responses similarly to the cold-start phase of DeepSeek-R1[9]. 
Furthermore, we incorpo-rated hand landmark information to improve the model’s ability to distinguish 
between different gestures.

With these modifications, the increased accuracy of open-world test scenarios demonstrating significant 
improvements in generalization and reasoning capabilities. The training details of the second stage are as follows:
Let 𝐻 (𝑡) be the hand landmark coordinates at time 𝑡 extracted by MediaPipe, 𝑉 (𝑡) be the raw video data at 

time 𝑡 , and 𝑃𝜃 be the projector network. The ground truth feature encoding is then computed as:
G(𝑡) = 𝑓rle

(
𝑓mp (V(𝑡)

)
(2)

where:
• 𝑓mp (·) is the MediaPipe Landmark Extraction function
• 𝑓rle (·) is the Relative Landmarks Encoding function

z(𝑡) = 𝑃𝜃

(
[G(𝑡); 𝑓video (V(𝑡))]

)
(3)

where:
• 𝑓video (·) extracts deep video features
• [·; ·] denotes feature concatenation
• 𝑃𝜃 is the multi-layer projector network with GELU activations

In this stage, the system simultaneously processes two input streams: (1) ground truth features containing
annotated gesture information, and (2) raw video features extracted from the visual encoder. These features are
combined and transformed through the multi-layer projector to produce modality-aligned embeddings.

In addition to feature augmentation, the fine-tuning stage also modifies the training paradigm by structuring
the data used in stage 1 into a Chain-of-Thought (CoT) format to facilitate step-by-step reasoning over gesture
intention, yielding a curated set of 110,000 examples. This transformation systematically links gesture video
features, fine-grained keypoint information, and the underlying intent in a step-by-step reasoning framework.
By integrating structured reasoning chains, the model is encouraged to progressively infer gesture intent rather
than relying on surface-level pattern recognition. This procedure is similar to process supervision[11], which
further endows the model with enhanced reasoning capabilities.

Furthermore, the system prompt used in the large language model (LLM) is carefully redesigned to stimulate
its reasoning capabilities[42], guiding it to establish logical connections between gesture actions, contextual cues,
and inferred meanings. This refined approach not only improves accuracy in distinguishing similar gestures
but also enhances the model’s interpretability, making it better suited for real-world applications where precise
gesture understanding is crucial.

4 EXPERIMENT

4.1 Training Details

In our work, we adopt the Vicuna-7b v1.5 model as the language backbone. Vicuna is an instruction-following
large language model fine-tuned from Llama 2 using user-shared conversations collected from ShareGPT. In the
training process, we uniformly sample 8 frames from each video, and each frame undergoes preprocessing where
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Algorithm 2 Cross-modal Interaction with CoT Tuning (Fine-tuning)
Require: video datasetV with CoT, pretrained VideoEncoder 𝑓video, LLM, epochs 𝐸2, batch size 𝐵
Ensure: trained ground-MLP projector 𝑃ground
1: initialize 𝑃ground parameters 𝜃
2: freeze VideoEncoder, unfreeze LLM
3: 𝑚𝑝_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 ← MediaPipeLandmarkExtractor()
4: 𝑟𝑙𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ← RelativeLandmarksEncoder()
5: for 𝑒 = 1 to 𝐸2 do
6: for each batch {𝑣𝑖 }𝐵𝑖=1 fromV2 do
7: 𝐻𝑖 ←𝑚𝑝_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 .𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑣𝑖 )
8: 𝐺𝑖 ← 𝑟𝑙𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 .𝑒𝑛𝑐𝑜𝑑𝑒 (𝐻𝑖 )
9: 𝑉feat ← 𝑓video (𝑣𝑖 )
10: 𝐶𝑖 ← [𝐺𝑖 ∥𝑉feat]
11: ℎ1 ← GELU(𝜃 ·𝑊1𝐶𝑖 + 𝜃 · 𝑏1)
12: ℎ2 ← GELU(𝜃 ·𝑊2 ℎ1 + 𝜃 · 𝑏2)
13: 𝑧fine ← 𝜃 ·𝑊3 ℎ2 + 𝜃 · 𝑏3
14: 𝑐𝑜𝑡_𝑝𝑟𝑜𝑚𝑝𝑡 ← build_CoT_prompt(𝑧fine)
15: tokens_prompt← LLM.tokenize(𝑐𝑜𝑡_𝑝𝑟𝑜𝑚𝑝𝑡)
16: tokens_target← LLM.tokenize(intent𝑖 )
17: output← LLM.generate(tokens_prompt)
18: loss← CrossEntropy(output, tokens_target)
19: loss.backward()
20: optimizer.step(); optimizer.zero_grad()
21: end for
22: end for
23: return 𝑃ground

it is resized and cropped to a size of 224 × 224. In the first stage, we train for one epoch with a batch size of 256,
keeping both the video encoder and language model (LM) frozen, and only training the MLP projector between
them. During this stage, we use simple single-turn dialogues to align the vision token with its corresponding
description, meaning, or intention text token. In the second stage, we reduce the batch size to 128, train the LM
along with the MLP projector, while keeping the encoder frozen. Regarding data usage, we train the model with
a constructed long-thought-chain dataset to help the model develop reasoning abilities for gesture descriptions
and abstract meanings. At the same time, we use Mediapipe-extracted landmarks as auxiliary information, added
as extra tokens to help the model distinguish fine-grained gestures. The initial learning rates for the two stages
are set to 1e-3 and 2e-5, with a warmup ratio of 0.03, and the AdamW optimizer is used with a cosine learning
rate schedule. We conduct the training on four 80GB A800 GPUs, with the first stage taking about 7 hours and
the second stage taking approximately 14 hours. Throughout both stages, we employ full-parameter fine-tuning
to ensure maximal model expressivity and performance.

4.2 Dataset

We introduce GestureInt, the first dataset specifically designed for gesture meaning and intention understanding.
It comprises gesture videos captured from both egocentric (first-person) and exocentric (third-person) viewpoints
organized in the form of QA pairs.
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Table 1. Comparison of gesture recognition datasets. Egocentric/Exocentric columns indicate support for egocen-

tric/exocentric viewpoints. Our dataset provides broader coverage with 3 caption types.

Dataset #Samples #Classes #Caption Types Egocentric Exocentric

Chalearn LAP IsoGD [40] 47,933 249 1 × ✓
HMDB-51 [17] 6,766 51 1 × ✓
Microsoft Kinect & Leap Motion [26] 1,400 10 1 × ✓
NVIDIA Dynamic Hand Gesture [29] 1,532 25 1 × ✓
EgoGesture 24,161 83 1 ✓ ×
Briareo [25] 120 12 1 × ✓
IPN Hand [6] 5,649 14 1 × ✓
JESTER 148,092 27 1 × ✓
GestureInt (Ours) 159,561 110 3 ✓ ✓

GestureInt is build on top of two existing datasets–Jester[27] and Egogesture[46], totaling over 150,000
clips across exocentric and egocentric views. GestureInt is constructed via a two-stage annotation pipeline
that combines large language model (LLM) generation with expert verification. In Stage 1, all video clips and
categories are used to ensure broad coverage. In Stage 2, we focus on 73 intent-bearing categories and construct
chain-of-thought (CoT) traces to support intent reasoning.
We structure the dataset in two distinct formats:
1. A three-dimensional separation—where data is explicitly categorized into description, meaning, and intention
2. A fully integrated format—where these dimensions are logically connected to provide a structured and

comprehensive reasoning framework.
The first format enables the model to adapt to the new task while the second format helps it learn the implicit

patterns linking visual features to semantic meanings
Our dataset includes approximately 130K third-person gesture videos and 30K first-person gesture videos

along with over 400K high-quality textual annotations. A critical flaw in previous gesture datasets is that their
annotations are often too brief, lacking the depth necessary for LLMs to accurately learn semantic meanings.
Additionally, existing annotations frequently mix descriptions (e.g., “thumbs up”), meanings (e.g., “stop sign”),
and intentions (e.g., “make a phone call”) leading to inconsistencies and ambiguity.

To address these issues, we extended the original labels into detailed depictions and generated possible meanings
using ChatGPT [31] Both steps were reviewed and refined by gesture experts to ensure accuracy and consistency.
Furthermore, we expanded the dataset by generating possible gesture intentions related to smart device control
and smart interface interactions making it more applicable to real-world use cases. Several examples of dataset
are available in Appendix A.1.
All annotations were produced through a two-stage, LLM-assisted pipeline. In Stage 1, GPT-4o generated

a detailed motion description and a plausible semantic meaning for every gesture clip; two domain experts
independently verified and amended these outputs and then added the intention label, with disagreements
resolved by discussion. In Stage 2, GPT-4o was prompted again to generate a CoT trace that logically connects
description, meaning, and intention, after which the same experts checked the trace for logical soundness and
refined it when necessary. For completeness, the full prompt used during the data annotation stage is provided in
Appendix A.2.

We split the data as follows: 10 % of the gesture classes are withheld entirely for open-set testing, while from
each of the remaining classes we set aside 10 % of the videos for closed-set testing and use the rest for training. For
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Fig. 4. The annotation pipeline.

instance, the "thumb upward" gesture was held out entirely for open-set evaluation, whereas "thumb downward"
videos were included both in training and in closed-set testing.

4.3 Evaluation Metrics

To comprehensively evaluate the performance of our gesture intent understanding system, we adopt a set of
complementary metrics that measure both the lexical overlap and the semantic consistency between the model
predictions and the reference descriptions. Specifically, we report BLEU-1 to BLEU-4, SPICE, and a GPT-assisted
semantic accuracy (ACC) as defined below.

BLEU-1 to BLEU-4. BLEU (Bilingual Evaluation Understudy) is a precision-based metric commonly used in
machine translation and text generation. It measures the n-gram overlap between a candidate sentence and one
or more reference sentences. BLEU-n refers to the precision of n-grams, and is formally defined as:

BLEU-n = BP · exp

(
𝑛∑︁
𝑖=1

𝑤𝑖 log𝑝𝑖

)
, (4)

where 𝑝𝑖 is the modified precision for 𝑖-gram,𝑤𝑖 is typically set to 1
𝑛
, and BP is the brevity penalty to penalize

overly short predictions. BLEU-1 measures unigram precision (e.g. BLEU-1 score of 66.65 means 66.65 % words
shared), BLEU-2 tightens the criterion to bigrams such as "thumb up", and so on up to BLEU-4.

SPICE. SPICE (Semantic Propositional Image Caption Evaluation) evaluates the semantic content of generated
sentences by parsing both candidate and reference sentences into scene graphs consisting of objects, attributes,
and relations. It computes an F1 score based on the overlap of these semantic tuples. Unlike BLEU, which relies
on surface-level n-gram matching, SPICE is more aligned with human judgments in capturing meaning and
conceptual correctness, so paraphrases like "lifts thumb in agreement" still earn high marks.
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Semantic Accuracy (ACC). To evaluate the semantic correctness of model outputs beyond lexical similarity, we
adopt a GPT-4o-assisted evaluation protocol Evaluation and justification of LLM-as-Judge is available in Appendix
C. Specifically, we provide GPT-4o with both the model-generated output and the corresponding ground truth
label and prompt it to score the semantic similarity on a 0–5 scale:

• 0: completely unrelated
• 1-3: weak or partial match
• 4–5: semantically accurate

We treat a prediction as correct if the score assigned by GPT-4o is greater than or equal to 4. The final ACC
score is computed as the percentage of samples classified as correct:

ACC =
𝑁score≥4

𝑁total
× 100%. (5)

4.4 Comparative Experiments

We evaluate the performance of several state-of-the-art LVLMs on our GestureInt dataset, targeting gesture inten-
tion recognition under open-ended, real-world conditions. As shown in Table 2, our model Gestura consistently
surpasses all baselines across both exocentric and egocentric views in terms of intent classification accuracy
(ACC) and BLEU scores.

Specifically, Gestura achieves a top-1 intent accuracy of 84.73% in the exocentric setting and 66.14% in the
egocentric view, substantially outperforming the previous state-of-the-art, GestureGPT, which achieves 72.08%
(closed-set) / 44.46% (open-set) and 40.07% (closed-set) / 17.38% (open-set) under the corresponding settings. This
highlights a significant advancement in accurate gesture intent interpretation, particularly under the challenging
egocentric perspective.

We further assess each model’s ability to generate descriptive text for gestures using BLEU-1 to BLEU-4 scores.
Gestura achieves a BLEU-4 score of 49.83 (exocentric) and 43.67 (egocentric), which are magnitudes higher than
those of previous models—e.g., Qwen2.5VL-7B (0.46 and 2.67), or LLaVA-Next-Onevision-7B (0.36 and 0.24).
These results highlight Gestura’s superior capacity to translate visual signals into coherent and semantically rich
descriptions.
Beyond numeric metrics, Gestura also demonstrates strong qualitative performance. Compared to top-tier

models like LLaVA-Next and Qwen2.5VL, which often produce generic or semantically ambiguous outputs, our
model generates more context-aware and intention-sensitive descriptions, accurately capturing not just physical
movement, but the communicative purpose behind the gesture. This is particularly important in free-form gesture
understanding, where similar gestures may convey distinct intents based on subtle variations or situational
context.
Overall, our results underscore the effectiveness of combining structured hand landmark information with

vision-language pretraining. The substantial gains across both classification and generation tasks validate our
two-stage training strategy and landmark-enhanced representation, establishing Gestura as a new state-of-the-art
for free-form gesture understanding.
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Table 2. Comparison between our Gestura and the currently state-of-the-art LVLM models on our Test sets of GestureInt

dataset. Metrics include BLEU-1∼4 and ACC (where ACC reports both closed-set / open-set results).

Method Exocentric Egocentric
ACC BLEU-1 BLEU-2 BLEU-3 BLEU-4 ACC BLEU-1 BLEU-2 BLEU-3 BLEU-4

Internvl2.5-8B [8] 8.29 12.07 3.95 1.12 0.34 10.55 14.18 3.76 1.03 0.25
LLaVA-Next-Video-7B-DPO [22] 8.20 13.01 4.72 1.20 0.34 8.41 13.59 4.76 1.26 0.36
LLaVA-Next-Onevision-7B [18] 10.97 16.84 3.86 1.04 0.36 12.28 13.40 3.66 1.00 0.24

LLaVA-Video-7B [47] 11.77 18.13 4.18 1.14 0.38 13.90 20.43 5.24 1.58 0.51
Qwen2.5VL-7B [4] 6.60 17.33 5.85 1.57 0.46 5.42 19.41 9.53 4.80 2.67

Video-LLaVA-7B [19] 2.89 12.50 1.95 0.24 0.04 6.50 13.93 2.35 0.33 0.07
GestureGPT(close)* 72.08 23.53 19.10 16.63 15.05 40.07 21.26 15.14 12.33 10.75
GestureGPT(open)* 44.46 18.65 12.21 9.11 6.79 17.38 21.11 11.74 6.95 4.39
Gestura(close) 84.73 53.94 51.87 50.61 49.83 66.14 52.33 47.72 45.15 43.67
Gestura(open) 65.65 34.88 25.36 19.37 14.17 21.71 33.73 22.10 14.60 9.93

Table 3. Ablation analysis of Qwen2.5VL and Gestura under exocentric settings.

Method Exocentric
ACC BLEU-1 BLEU-2 BLEU-3 BLEU-4 SPICE

Qwen2.5VL-7B (Same data) close 73.46 45.16 42.13 40.58 39.68 0.50
open 66.76 29.82 21.19 16.16 11.57 0.26

Gestura close 84.73 53.94 51.87 50.61 49.83 0.63
open 65.65 34.88 25.36 19.37 14.17 0.30

Table 4. Ablation analysis of Qwen2.5VL and Gestura under egocentric settings.

Method Egocentric
ACC BLEU-1 BLEU-2 BLEU-3 BLEU-4 SPICE

Qwen2.5VL-7B (Same data) close 41.39 39.11 31.41 27.16 25.06 0.36
open 21.23 31.41 18.55 10.81 5.93 0.17

Gestura close 66.14 52.33 47.72 45.15 43.67 0.56
open 21.71 33.73 22.10 14.60 9.93 0.20

4.5 Ablation Study

To better understand the contributions of each component in our system, we conduct a comprehensive ablation
study under both exocentric and egocentric test settings. Specifically, we evaluate three configurations: (1)
baseline, (2) fine-tuning with only Chain-of-Thought (CoT), (3) full pipeline with both CoT and LPM used during
both training and inference, and (4) fine-tuning with both CoT and Landmark Processing Module (LPM) but
testing without it. The performance is compared in both closed-set and open-set scenarios.

Ablation Study Results. Table 5 presents a comprehensive ablation study evaluating the contributions of Chain-
of-Thought (CoT) and the Landmark Processing Module (LPM) under both exocentric and egocentric settings,
across closed-set and open-set scenarios.

We observe that incorporating both CoT and LPM achieves the best overall performance. Specifically, the full
model configuration (row 3) reaches the highest intent recognition accuracy in both views: 84.73% (exocentric
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Table 5. Ablation Study on ACC results under four ablation experimental conditions across both Exocentric and Egocentric
scenarios.

Methods Components Exocentric Egocentric
Multi-View. CoT. LPM fine-tuning. LPM testing. close open close open

1 - - - - 2.89 / 6.50 /
2 ✓ - - - 70.13 25.34 53.14 12.25
3 ✓ ✓ - - 80.27 63.52 60.34 17.78
4 ✓ ✓ ✓ ✓ 84.73 65.65 66.14 21.71

Gestura ✓ ✓ ✓ - 82.73 66.48 66.20 21.06

closed-set) and 66.14% (egocentric closed-set). In comparison, the CoT-only setup (row 2) yields lower accuracy
(80.27% and 60.34%, respectively), while the baseline without any of these components performs significantly
worse (70.13% and 53.14%). These results demonstrate that LPM offers complementary structural cues that enhance
the semantic grounding facilitated by CoT reasoning.

In the open-set setting, where gesture categories are unseen during training, overall performance drops due to
the increased challenge of generalization. Nevertheless, our model remains robust: the full configuration still
outperforms all alternatives, achieving 65.65% (exocentric) and 21.71% (egocentric).

Considering that the extraction and encoding of Landmark information in practical applications may negatively
affect latency, we compare the performance during the test phase with and without using MediaPipe information.
Notably, even when LPM is removed at test time (row 4), the model maintains competitive accuracy, highlighting
that gesture-aware fine-tuning with LPM imparts lasting benefits even when the module is no longer available
during inference. Our experiments demonstrate two key findings: (1) Training with landmark information
improves model robustness; (2) The model retains high performance even when landmark data is excluded during
testing.
Additionally, to assess the effectiveness of our proposed framework, we conducted an ablation study by fine-

tuning the latest multimodal model Qwen2.5VL-7B on the same data used by Gestura. As shown in Tables 8 and 9,
despite being trained on identical datasets, Gestura significantly outperforms Qwen2.5VL across both exocentric
and egocentric settings. In both closed and open scenarios, Gestura achieves higher accuracy, BLEU scores, and
SPICE metrics, demonstrating its superior capability in understanding free-form gestures and inferring intent.
These findings confirm that:

(1) CoT reasoning can better connect gesture descriptions with their meanings or intentions by providing an
objective and logical inference process. This approach enables the model to make reasonable predictions
for novel gestures by leveraging existing prior knowledge.

(2) Gesture landmarks offer both direct (test-time input) and indirect (training-time regularization) advantages,
improving robustness and generalizability.

(3) The combination of CoT and LPM provides the most reliable and interpretable results across diverse
perspectives and settings, underscoring the importance of integrating both symbolic and spatial priors for
free-form gesture understanding.

(4) Compared to state-of-the-art LVLM fine-tuned on the same dataset, our framework consistently achieves
superior performance across exocentric and egocentric views. This highlights the effectiveness of our
framework and the advantage of a structured, intent-aware pipeline.
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5 IMPLEMENTATION

In this section, we explore the deployment of Gestura in a device-server hybrid architecture, where the model
is hosted on a backend server and communicates with a wearable AI glasses prototype. This setup balances
computational efficiency and real-time responsiveness, while maintaining low latency and user mobility.
We describe our system implementation, including the hardware setup of the AI glasses and the interaction

pipeline from gesture capture to audio feedback. To evaluate real-world usability, we conducted a user study in
which participants performed intuitive, free-form gestures based on given intent prompts. We further assess the
system’s performance through metrics such as intent recognition accuracy and response time, demonstrating that
Gestura achieves reliable on-the-fly inference. Finally, feature-level analysis reveals how semantic reasoning helps
unify diverse gesture expressions, reinforcing the importance of integrating visual and language understanding
in gesture-intent recognition.

5.1 System Setup

The implementation of Gestura for on-device deployment is mainly on our prototype AI glasses. We implement
the model first, and using the AI glasses as the wearable device to handle the visual input with its monocular
camera in the middle of the frame, and the audio input with its microphone. After receiving, the inputs go directly
to the model for processing, the output text go straight to TTS tool and the transformed audio sent to the AI
glasses and played by the embedded speaker. Specifically, Gestura was deployed on a NVIDIA A100 GPU for
inferencing. The AI glasses equipped Qualcomm HexagonTM NPU, with a lightweight Linux-based operating
system run on it. Video input was captured via an embedded camera with a resolution of 4K resolution at 30 FPS,
ensuring compatibility with real-world gesture capture scenarios.
Task Description: Specific eight tasks assigned to participants related to smart device and interface control.
Participants are required to execute gesture freely based on provided key words about tasks.
Task Procedure: Participants were first given a brief introduction to the smart device and interface control task
without any prior guidance on specific gestures. They then wore our device and proceeded with the experiment.
Each participant was provided with eight independent keyword phrases and was instructed to spontaneously
perform the most natural and intuitive gesture corresponding to each phrase, without prior contemplation. The
system recorded the experimental data based on the feedback received from the device.

5.2 Data Collection and Participants

To evaluate the on-device deployment, we conducted an additional user study involving 13 volunteers. We
recruited 13 adult volunteers (9 men, 4 women) from an institute of a company. Their ages ranged from 20 to
30 years (MEAN = 23.8, SD = 4.2). Gesture-interaction experience was assessed with a pre-study questionnaire,
which shows that seven participants have prior gesture-based interface experience while others don’t.

Participants were presented with a set of 8 intent-related gesture keywords and were instructed to perform
free-form gestures based on their intuitive understanding of each keyword, without receiving any predefined
demonstrations or constraints. This setup aimed to capture naturalistic and diverse gesture expressions across
individuals.

In total, the study yielded 104 gesture samples (13 participants × 8 keywords), each recorded as a first-person
perspective video with an average duration of approximately 2 seconds. All recordings were collected under
consistent lighting and environmental conditions to ensure data quality and comparability. This participant-
generated dataset serves as a valuable complement to our open-source gesture-intent corpus, offering realistic
and unconstrained gesture expressions for evaluating real-time recognition performance in wearable scenarios.
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5.3 Evaluation

The performance of the on-device Gestura system was evaluated by incorporating a language-based intent
inference approach. Specifically, we utilized ChatGPT as the intent recognition intermediary: for each gesture
video, our model first generated a textual output, which was subsequently fed into ChatGPT to infer the most
likely corresponding function.
For each sample, we collected the Top-1, Top-3, and Top-5 intent predictions based on ChatGPT’s semantic

ranking against a predefined intent pool. Recognition accuracy was then computed as the percentage of cases in
which the ground-truth intent appeared within the top-𝑘 predictions (𝑘 ∈ {1, 3, 5}).

In addition to intent recognition accuracy, we assessed the system using the following metrics:
• Top-𝑘 Accuracy: The proportion of test samples where the correct intent appeared in the top-1, top-3, or
top-5 predicted intents.
• Response Time: The average latency (in milliseconds) from video input to final intent prediction, capturing
the total runtime of the vision-to-language-to-intent pipeline.

These evaluation metrics reflect a comprehensive balance between recognition accuracy, responsiveness, and
deployment efficiency, addressing the practical considerations of real-world edge computing scenarios.

5.4 Overall Performance

Table 6. Top-1 / Top-3 / Top-5 accuracy per intent category in an open-world experiment.

Intent Category Samples Top-1 Acc Top-3 Acc Top-5 Acc
come over / beckon 13 0.0000 0.3846 0.7692
confirm / agree 13 0.7692 1.0000 1.0000

decrease temp (AC) 13 0.1538 0.3846 0.3846
go to next page 13 0.3077 0.5385 0.6154

go to previous page 13 0.4615 0.7692 0.8462
increase temp (AC) 13 0.0000 0.0769 0.1538
make a phone call 13 0.6154 0.7692 0.9231

take a photo 13 0.6923 0.6923 0.8462
Overall 104 0.3750 0.5769 0.6923

Based on the results presented in Table 6, our system demonstrates promising performance on egocentric
gesture-intent recognition, achieving an overall Top-1 accuracy of 37.5%, Top-3 accuracy of 57.7%, and Top-5
accuracy of 69.2% across all eight intent categories. These results highlight the system’s effectiveness in capturing
intent-relevant semantics, even when users perform free-form and visually diverse gestures. In terms of latency,
the system achieves a practical response time ranging from 5 to 10 seconds, with an average of 7.83 seconds.
Notably, when excluding communication delays and TTS overhead, the core model processes inputs and produces
outputs within an average of just 1.6 seconds—a substantial improvement over themulti-agent-based GestureGPT,
which requires 227 seconds per gesture. This dramatic reduction in response time is largely attributed to our
lightweight, end-to-end framework design, which eliminates the need for complex inter-agent communication
and enables much faster and more efficient inference.

Intent categories such as “confirm / agree” and “make a phone call” achieve particularly high recognition rates
(Top-1 accuracy of 76.9% and 61.5% respectively), suggesting that these gestures tend to be more consistent across
users. In contrast, categories like “increase temp (AC)” and “come over / beckon” exhibit lower Top-1 performance,
reflecting greater variability in individual expression and ambiguity in visual cues. However, the Top-3 and Top-5
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accuracies indicate that the correct intent is still frequently ranked among the model’s top predictions, which is
valuable for downstream interactive applications.

Fig. 5. Top-k Accuracy with 95% Bootstrap CI.

We provide an error-bar plot 5 contrasting our Top-1/3/5 accuracies with their chance baselines. One-sample
t-tests show that Top-1(p = 0.0386 < 0.05, d = 0.90) and Top-3 (p = 0.0309, d = 0.95 outperform chance significantly,
whereas Top-5 accuracy showed a positive trend (p = 0.1036 ≈ 0.10).

To strengthen the statistical interpretation, we additionally performed bootstrap analysis with 10,000 resamples,
yielding consistent results. For Top-5, the bootstrap delta was still positive (+19.2 pp), and the effect size remained
moderate ( d = 0.66), the 95% CI marginally included zero [–1.0 pp, +36.5 pp]. This suggests a positive trend
despite the lack of statistical significance, reinforcing the overall robustness of the model under looser evaluation
thresholds. The Top-1 improvement over chance was +27.5 pp (95% BCa CI = [7.3 pp, 46.7 pp], d = 0.90), and
Top-3 was +27.7 pp (CI = [8.5 pp, 46.0 pp], d = 0.95). These results confirm that the model is statistically and
practically effective in producing correct Top-1 and Top-3 predictions.

Overall, these results demonstrate the robustness and adaptability of our approach in realistic, unconstrained
egocentric scenarios, and underscore the benefits of integrating visual and semantic understanding for gesture-
based intent inference.

5.5 Analysis

The variability of real-world gesture performance can introduce a gap between controlled experimental data and
practical applications. Categories with semantic uniqueness tend to achieve better performance.
Misdirections in the open-world test arise mainly from three factors. (1) Cultural and personal variation:

volunteers often select different gestures to express the same intent. (2) Motion symmetry: visually similar
trajectories such as “hand moving up” versus “hand moving down” remain hard to disambiguate. This situation
appears as well when we generating enriched motion description using GPT-4o (3) Gesture repetition: users
frequently repeat dynamic motions for emphasis, which obscures directionality and confuses opposite pairs like
“scroll up vs. scroll down” or “swipe left vs. swipe right.”

In real-world experiments, we observed that participants often performed different gestures to express the
same intent. As illustrated in Figure 6, the visual features extracted by the video encoder — represented as tensors
of shape (8, 4096) — tend to exhibit clustering only when the performed gestures are visually similar, such as
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those corresponding to Gesture Type 1 and Gesture Type 7. However, for other gesture types, due to individual
variations in motor expression, the extracted features are more dispersed, leading to less distinct clusters.

In contrast, as shown in Figure 7, the semantic features derived from LLM output tokens — typically in the
shape of (56, 4096) — demonstrate clearer clustering patterns even when the visual gestures differ. By leveraging
our proposed pipeline, gestures that differ significantly in visual appearance yet share the same underlying intent
are effectively brought closer together in the semantic embedding space. These findings highlight the importance
of gesture-intent recognition, as it enables more robust understanding beyond surface-level gesture differences.

Fig. 6. Visualization of Video Features. Fig. 7. Visualization of Textual Representations.

6 DISCUSSION

Despite the progress made in free-form gesture comprehension, a persistent challenge remains: how can open-set
gesture recognition systems approach the performance of closed-set counterparts? In closed-set settings, models
operate under the assumption that all gesture categories are predefined and known during training, leading to
high accuracy but limited generalization. Conversely, open-set systems must generalize to unseen or user-defined
gestures, which inherently introduces ambiguity and performance degradation.
The performance gap between exocentric closed-set and egocentric open-set scenarios arises from several

factors. First, the exocentric subset contains fewer categories but more training samples per class, making it
easier for the model to generalize. In contrast, the egocentric set exhibits greater category diversity and dynamic
hand motions, increasing ambiguity. Second, in open-world settings, the model may force predictions into seen
categories even when visual matches are poor—particularly problematic for egocentric gestures with more
varied semantics. Third, egocentric videos are often affected by environmental noise such as lighting or cluttered
backgrounds. Lastly, human performance variability (e.g., due to cultural factors or directional ambiguity) further
compounds the recognition challenge.

While Gestura is currently deployed on a single NVIDIA A100 40GB GPU for benchmarking, its architecture is
designed with efficiency in mind. Given its 8B parameter scale and streamlined end-to-end design, there is strong
potential for edge deployment. Notably, with optimization techniques such as model quantization, pruning, and
distillation, Gestura can be significantly compressed without substantial performance loss. For instance, platforms
like the NVIDIA Jetson AGX Orin[30], which provides up to 64GB of shared memory and 2048-core Ampere GPU,
offer a feasible hardware base for deploying a compressed version of our model. This opens the door for real-time,
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free-form gesture understanding on edge devices, enabling applications in smart homes, AR/VR systems, and
robotics without reliance on cloud resources.
To bridge this gap, we propose several future directions:
1) Enriching high-quality, semantically-annotated gesture data: Our current framework benefits from a

structured, QA-formatted gesture-intent dataset. Expanding this dataset with more diverse users, environments,
and cultural contexts would significantly enhance model robustness. Incorporating multimodal annotations—e.g.,
combining gesture videos with eye gaze, speech cues, or physiological signals—could provide richer context for
disambiguation.

2) Adaptive inference through test-time scaling: Instead of relying solely on fixed training representations,
test-time adaptation techniques (e.g., retrieval-augmented inference, few-shot adaptation, or gradient-based
prompt tuning) may allow models to dynamically adjust to novel gestures. These approaches enable the system
to scale semantically at inference time without retraining, better capturing the latent intent behind unfamiliar
hand motions.

3) Contrastive grounding with weak supervision: Leveraging large-scale, weakly labeled video data (e.g.,
instructional videos, sign language corpora) via contrastive pretraining may help align free-form gestures with
high-level semantics in the absence of dense annotation. This could reduce the reliance on curated datasets while
enhancing open-set generalization.

While Gestura is currently deployed on a single NVIDIA A100 40GB GPU for benchmarking, its architecture is
designed with efficiency and scalability in mind. Given its 8B parameter scale and streamlined end-to-end design,
there is strong potential for edge deployment. Notably, with optimization techniques such as model quantization,
pruning, and knowledge distillation, Gestura can be significantly compressed without substantial performance
loss. For instance, platforms like the NVIDIA Jetson AGX Orin, which offers up to 64GB of shared memory and a
2048-core Ampere GPU, provide a viable hardware foundation for running a lightweight version of the model.
This opens the door for real-time, free-form gesture understanding on edge devices, enabling applications in
smart homes, AR/VR systems, and robotics without reliance on cloud resources.

Ultimately, we envision a future where open-set gesture recognition systems not only narrow the performance
gap with their closed-set counterparts but also excel in adaptability, efficiency, and deployability. Realizing this
vision requires synergistic advancements in robust gesture encoding, semantic grounding, and context-aware
reasoning, alongside hardware-aware model design. With frameworks like Gestura, which balance performance
and efficiency, we are one step closer to enabling real-time, intuitive, and accessible gesture interaction across
diverse real-world environments.

7 CONCLUSION

In this work, we introduce Gestura, a free-form hand gesture understanding system that harnesses the power of
LVLMs to bridge the gap between motion patterns and semantic intent. Our framework is built upon a novel
hierarchical architecture that combines landmark processing with advanced cross-modal alignment techniques.
This enables the system to not only interpret subtle hand movements but also to infer the underlying user
intent with remarkable accuracy. Through extensive experiments in real-world scenarios, Gestura demonstrates
exceptional performance, achieving a top-1 intent accuracy of 84.73% in exocentric settings and 66.14% in
egocentric settings. These results highlight the system’s ability to handle the complexity and variability of
open-world environments. Moreover, Gestura’s average response time of just 7.83 seconds, with pure model
inference taking only 1.6 seconds, underscores its suitability for real-time applications. By eliminating the need
for users to learn predefined gestures, Gestura sets a new standard for intuitive and natural human-computer
interaction, opening avenues for future research in creating more adaptive and user-friendly interfaces.
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A Dataset

A.1 Data Subset

Gesture Class Image Motion Descrip-
tion

Semantic Meaning
/ Intention CoT Reasoning (Excerpt)

Measure
Extending the thumb
and index finger
. . . . . .

This gesture is often
used to give a rough
idea of the length
or gap between two
points, conveying the
concept of measure-
ment through finger
positioning.

“<think>. . . . . .where the dis-
tance between the fingertips
serves as the measurable span.
. . . . . . </think><answer>This ges-
ture is often used to give a rough
idea of the length or gap between
two points, conveying the concept
of measurement through finger
positioning.</answer>"

Phone call

Extending the thumb
and pinky finger
while curling the
other fingers inward
. . . . . .

Indicates the action
of making a phone
call or suggesting
someone should call
you.

“<think>. . . . . .mimics the
shape and position of a tra-
ditional telephone handset.
. . . . . . </think><answer>This ges-
ture is used to initiate a phone call
to someone.</answer>"

Thumb up

Raising the thumb
upward while the
other fingers are
curled into the palm

Represents approval,
agreement, or a
positive acknowledg-
ment. Commonly
used in many cul-
tures to signal that
something is good or
satisfactory.

“<think>. . . . . .This gesture is
widely recognized and utilized
. . . . . . </think><answer>Represents
approval, agreement, or a positive
acknowledgment. Commonly used
in many cultures to signal that
something is good or satisfac-
tory.</answer>"

Push hand away

Extending the arm
forward with the
palm facing outward
and fingers spread

It can signify refusal,
disapproval, or a re-
quest for personal
space. This gesture
signals to stop or pre-
vents entry into a par-
ticular area.

“<think>. . . . . . create a physi-
cal or metaphorical boundary.
. . . . . . </think><answer>It can
signify refusal, disapproval, or
a request for personal space.
This gesture signals to stop or
prevents entry into a particular
area.</answer>"

Table 7. Examples of GestureInt annotations, including image, semantic breakdown, and reasoning.
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A.2 Data Annotation

First, we input the collected gesture videos and prompts that ask to caption the video with description and
meaning into ChatGPT-4o. Then we have experts check whether the output from ChatGPT-4o matches the
gesture category, and make modifications if there are discrepancies. This generates a dataset of captions that
describe the gestures and their meaning, which we use as the training data for the first stage of training. The
prompt given to GPT-4o as follow:

’role’: ’user’,
’content’: ’Please caption the following hand gesture video by providing a detailed description of hands and its potential
meaning:
Gesture Video: {video_data}
Provide your response only as a Python dictionary string with keys, ’description’, and ’meaning’.
- ’description’ should be a clear, concise explanation of the gesture’s physical appearance and common usage.
- ’meaning’ should explain the potential interpretation or cultural significance of the gesture.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string.
For example, your response should look like this: {’description’: ’Raising the thumb upward while other fingers are
curled.’, ’meaning’: ’Represents approval or agreement.’}’

For the second phase, we provide ChatGPT-4o with a caption describing a gesture and explicitly inform it
of the intended meaning or purpose of the gesture, instructing ChatGPT-4o to reason through the relationship
between the description of the gesture and its intended meaning. And ask it to put his thought process in
< 𝑡ℎ𝑖𝑛𝑘 > {𝑟𝑒𝑎𝑠𝑜𝑛} < /𝑡ℎ𝑖𝑛𝑘 >, ending with < 𝑎𝑛𝑠𝑤𝑒𝑟 > {𝑔𝑒𝑠𝑡𝑢𝑟𝑒 𝑚𝑒𝑎𝑛𝑖𝑛𝑔} < /𝑎𝑛𝑠𝑤𝑒𝑟 >. The prompt given
to ChatGPT-4o as follow:

’role’: ’user’,
’content’: ’Given the following gesture description and its intended meaning, please explain the reasoning process that
connects the physical appearance of the gesture to its intended interpretation.
- Gesture Description: {description}
- Intended Meaning: {meaning}
Write your reasoning enclosed in <think> ...</think> , and conclude with the inferred gesture meaning enclosed in
<answer> ...</answer> .
Only output the reasoning and answer in the specified format. DO NOT include any other text, comments, or expla-
nations.
For example, your response should look like this:
<think> Raising the thumb is commonly used in many cultures to indicate positivity or agreement. Since the gesture
matches this form, the intended meaning is approval.</think>
<answer> Represents approval or agreement.</answer> ’

The output generated by ChatGPT-4o, becomes the target for our training data. The input for this training
data consists of two components: the video data (which provides the visual information) and the prompt "Please
describe the gesture in detail and provide its meaning or intent." The model is expected to generate a coherent,
structured response that reflects both the description of the gesture and its intended purpose.
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B Ablation of freezing the LLM’s weights

Freezing the LLM during Stage 1 leads to consistent improvements across all settings (table 8, table 9), especially
in egocentric and open-world scenarios. This suggests that preserving the language model’s prior knowledge is
crucial for robust gesture understanding.

Table 8. Ablation analysis of Gestura with LLM unfrozen in stage 1 and Gestura under exocentric settings.

Method Exocentric
ACC BLEU-1 BLEU-2 BLEU-3 BLEU-4 SPICE

Gestura(LLM unfrozen) close 83.01 51.20 50.92 49.57 48.76 0.61
open 64.61 34.58 25.15 19.13 13.97 0.29

Gestura close 84.73 53.94 51.87 50.61 49.83 0.63
open 65.65 34.88 25.36 19.37 14.17 0.30

Table 9. Ablation analysis of Gestura with LLM unfrozen in stage 1 and Gestura under egocentric settings.

Method Egocentric
ACC BLEU-1 BLEU-2 BLEU-3 BLEU-4 SPICE

Gestura(LLM unfrozen) close 56.38 47.03 41.32 38.21 36.50 0.48
open 20.18 34.21 22.50 14.82 9.85 0.20

Gestura close 66.14 52.33 47.72 45.15 43.67 0.56
open 21.71 33.73 22.10 14.60 9.93 0.20

C LLM as Judge

Table 10. Pairwise inter-rater agreement (Cohen 𝜅) between the four human raters.

human1 human2 human3 human4

human1 — 0.906 0.906 0.775
human2 0.906 — 0.964 0.883
human3 0.906 0.964 — 0.843
human4 0.775 0.883 0.843 —

Table 11. Agreement between GPT-4o and the human majority vote.

Cohen 𝜅 MCC MAE (0/1)

GPT-4o vs. Human 0.982 0.982 0.016

We evaluate the reliability of GPT-4o as an automatic judge on a 200-sample subset independently labelled
by four human raters. Using majority voting, we construct a human gold standard H and compare it against
GPT-4o’s binary decisions G.
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To quantify agreement, we report three complementary metrics. The mean absolute error (MAE) between
GPT and human labels is MAE(G,H) = 0.016, meaning GPT-4o’s decisions differ from the human consensus on
only 1.6% of cases. Cohen’s 𝜅 = 0.982 and Matthews correlation coefficient (MCC) = 0.982 both indicate great
agreement, consistent with prior interpretation standards.
We also assess potential bias and instability. The average rating difference𝐺 −𝐻 is +0.020, suggesting GPT

is 2 percentage points more lenient than humans. To test robustness, we prompted GPT-4o three times using
paraphrased instructions. The standard deviation of verdicts across these runs was 0.09, indicating low instability
and minimal sensitivity to prompt variation.

Overall, these results confirm that GPT-4o produces judgments that are highly consistent with expert human
raters, with negligible systematic bias and strong reliability across reformulations. We therefore employ GPT-4o
as the primary evaluator for all large-scale experiments in this study.
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