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Recent molecular generation models for structure-based drug design (SBDD)
often produce unrealistic 3D molecules due to the neglect of structural fea-
sibility and drug-like properties. In this paper, we introduce DiffGui, a target-
conditioned E(3)-equivariant diffusion model that integrates bond diffusion
and property guidance, to address the above challenges. The combination of
atom diffusion and bond diffusion guarantees the concurrent generation of
both atoms and bonds by explicitly modeling their interdependencies. Prop-

erty guidance incorporates the binding affinity and drug-like properties of
molecules into the training and sampling processes. Extensive experiments
prove that DiffGui outperforms existing methods in generating molecules with
high binding affinity, rational chemical structure, and desirable properties.
Ablation studies confirm the importance of bond diffusion and property gui-
dance modules. DiffGui demonstrates effectiveness in both de novo drug
design and lead optimization, with validation through wet-lab experiments.

Drug discovery not only greatly impacts individuals’ physical health
and the quality of their lives, but also serves as a vital catalyst for social
progress and national economic prosperity. However, the develop-
ment of innovative drugs is fraught with challenges and uncertainties.
This process, involving retrieval of lead compound, lead optimization,
preclinical evaluations, and clinical trials, typically spans 10 years and
costs billions of dollars on average'”. The discovery of lead com-
pounds is the most important stage in the entire process because it
exerts huge influences on subsequent development steps and deter-
mines the fate of the project to a large extent*’. Traditionally, the
identification of potential drug candidates mainly relied on incidental
occurrences®’ that are inherently difficult to replicate with con-
sistency. However, with the advancements of techniques in molecular
biology, structural biology, combinatorial chemistry, and artificial
intelligence (Al), the paradigm of drug discovery has been transferred
from random methods to rational drug design, which can significantly
increase the success rate and efficiency of drug development.
Rational drug design is composed of two approaches: ligand-
based drug design (LBDD) and structure-based drug design (SBDD).
LBDD designs new molecules by modifying the existing active ligands

to enhance their binding affinity, selectivity, and pharmacokinetic/
pharmacodynamic properties®. It is particularly valuable when the
three-dimensional (3D) structure of the biological target is unknown.
However, with the accurate prediction of biomolecular structures now
widely available through Al-based methods such as AlphaFold’™,
LBDD faces limitations for not incorporating the structural informa-
tion of target proteins. In addition, it is also unsuitable for proteins
with few or no known ligands, which is a common situation when
developing drugs for novel targets. By contrast, SBDD is believed to be
more effective to deliver the ligand molecules inside the binding
pockets by considering the drug-target interactions at the molecular
level*™, It includes two main protocols: virtual screening and mole-
cular generation. Virtual screening employs physics-based or data-
based scoring functions to estimate the binding affinities between
targets and ligands, thereby selecting top-ranked molecules from
chemical compound libraries for subsequent wet-lab validation and
further optimization'¢, Yet, it is computationally expensive to search
the physical libraries that involve 10° - 10’ molecules or the virtual on-
demand libraries that contain 10 - 10" molecules, let alone the mas-
sive chemical space (10%° - 10'°) of potential pharmacologically active
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molecules”'®. Besides, the gigascale screening must be extremely
accurate to guard against the false-positive hits that can cheat the
scoring function by exploiting its imperfections and approximations'.
Even a minimal false-positive rate of one in a million in a 10" library
would result in 10,000 false hits, which may flood out valid hit can-
didate selection®.

Recent breakthroughs in geometric deep learning techniques
have facilitated the emergence of deep generative models®* %, which
are capable of directly producing pocket-aware ligands with appro-
priate 3D conformations. Early pioneers have attempted to represent
the molecules as atomic density maps and the 3D space as voxelized
grids??°. They harness 3D convolutional neural networks (3D CNNs) to
model the protein-ligand complex and utilize conditional variational
autoencoders (VAEs) to generate new molecules. Nonetheless, these
models are not equivariant on molecular geometry and suffer from
serious scalability problems owing to the exponential growth of the
voxels’ number as the pocket size increases. To address these issues,
the following approaches*2%*°*! represent the molecules as 3D graphs
and achieve SE(3)-equivariance through various techniques. For
instance, GraphBP? incorporates the embeddings of atomic distance
and bond angle into the training and sampling processes.
Pocket2Mol** employs an E(3)-equivariant graph neural network (GNN)
to ensure the rotational and translational equivariance of the system.
Despite their improved performance, these models adopt an auto-
regressive strategy to generate the ligand atoms sequentially, which
may suffer from several inherent shortcomings. Firstly, the sequential
sampling models impose an unnatural generation order of atoms,
thereby neglecting the global context information of the ligand. Sec-
ondly, errors introduced during the initial stages of the sampling
process may gradually accumulate to promote the formation of invalid
structures. Lastly, the autoregressive models frequently encounter the
problem of premature termination, thus resulting in the generation of
small fragments instead of complete ligands.

Diffusion-based methods®* alleviate the aforementioned pro-
blems via the implementation of non-autoregressive generation
scheme. By integrating diffusion probabilistic models* and equivar-
iant neural networks” %, these methods can accomplish the task of
pocket-conditioned molecular generation within continuous 3D space.
Generally, each atom in the protein-ligand complex is characterized by
continuous atom coordinates and discrete atom types, with noise
being incrementally introduced during the forward diffusion process.
The equivariant GNN is utilized to not only update the atom embed-
dings by message passing mechanisms, but also preserve the rotation,
translation, and permutation symmetries. In reverse diffusion, atom
types and positions are predicted by denoising from categorical and
Gaussian distributions, respectively. However, the diffusion-based
models are often inclined to produce unrealistic molecules with dis-
torted structures, such as three- or four-membered rings, extra-large
rings, and fused rings, which are energetically unstable and syntheti-
cally difficult. This may stem from the manner that the complete
molecules are constructed. After acquiring the atom positions, current
models typically predict the bond types based on canonical bond
lengths and assemble them into intact molecules using the OpenBabel
toolkit*°. As a consequence, minor deviations in atom coordinates can
give rise to incorrect identification of bond types, subsequently
affecting the overall structure of the generated ligand. Although
DecompDiff* incorporates molecular inductive bias into the training
process by pre-decomposing ligands into arms and scaffolds, and
leverages the validity guidance to instruct the sampling procedure, it
cannot fully resolve the issue of ill-conformations because of the
complexity and overwhelming diversity of inductive biases. On the
other hand, most diffusion models aim to yield high-affinity binders
without explicitly considering the essential drug-like properties such
as drug-likeness*>**, synthetic accessibility**, and the octanol-water
partition coefficient*, which serve as crucial criteria for choosing
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favorable compounds. They aspire to implicitly extract the relevant
information from existing protein-ligand datasets, albeit acknowl-
edging that the molecules contained in these datasets may not uni-
formly exhibit optimal or satisfactory properties.

In this work, inspired by the work that solves the atom-bond
inconsistency problem* and classifier-free diffusion guidance*, we
propose DiffGui, a novel guided diffusion model to tackle the above
issues. It can not only mitigate the ill-conformational problem by
introducing bond diffusion as a guidance to generate atom coordi-
nates, but also address the attribute issue by employing property
guidance during training and sampling processes. Extensive experi-
ments presented in this study have demonstrated that DiffGui can
effectively generate novel 3D molecules with high estimated binding
affinities, plausible chemical structures and desired molecular prop-
erties inside the given protein pockets. It achieves the state-of-the-art
(SOTA) performance on various evaluation metrics for the PDBbind
dataset and exhibits competitive outcomes for the CrossDocked
dataset. Case studies further confirm the superiority of DiffGui in the
realms of de novo drug design and lead optimization. The generation
experiments for mutated targets suggest that DiffGui is sensitive to
minor changes within the protein pocket environment, underscoring
its capacity to capture the complicated topological and geometrical
information.

Results

This section is organized as follows: First, we describe the overall fra-
mework of the DiffGui model. Second, we compared the quality,
molecular metrics and properties of the ligands generated by our
method with those produced by other existing SOTA methods. Sub-
sequently, we conducted ablation studies to determine the respective
roles of bond diffusion and property guidance modules. Finally, we
demonstrated the practical value of DiffGui by applying it to structure-
based drug design for protein targets, lead optimization based on
fragments, and molecule generation for mutated targets. Specifically,
the quality of generated molecules is primarily evaluated by the
Jensen-Shannon (JS) divergence between the distributions of bonds,
angles, and dihedrals for the reference and generated ligands. The
RMSD (root mean square deviation) values between the generated
geometries and optimized/predicted conformations are also utilized
as an evaluation metric for quality. The basic molecular metrics include
atom stability, molecular stability, PoseBusters validity (PB-validity),
RDKit validity, novelty, uniqueness, similarity with reference ligands,
and similarity of protein-ligand interaction fingerprints. The molecular
properties encompass estimated binding affinity (Vina Score), quan-
titative estimate of drug-likeness (QED), synthetic accessibility (SA),
octanol-water partition coefficient (LogP), and topological polar sur-
face area (TPSA).

Overview of DiffGui framework

DiffGui is a bond- and property-guided, non-autoregressive generative
model for target-aware molecule generation based on the equivariant
diffusion framework®. It integrates the mechanism of atom diffusion
and bond diffusion into the forward process, while leveraging an array
of molecular properties such as affinity, QED, SA, LogP, and TPSA to
guide the reverse generative process (Fig. 1a). Essentially, during the
forward process g(x‘|x*~1, p, ¢) (p and c represent the protein pocket
and the condition of molecular properties, respectively), noise is gra-
dually injected into the atoms and bonds of the ligand based on dif-
ferent noise schedules (Fig. 1b). This divides the forward process into
two distinct phases. In the first phase, the bond types are gradually
diffused towards the prior distribution (none-bond type), while the
atom types and their positions undergo marginal disruption. Injecting
a small amount of noise into the atoms, rather than rigidly fixing their
states in this phase, is important for enhancing the model’s robustness.
This approach provides more flexibility in predicting the bond types,
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Fig. 1| Overview of DiffGui framework. a The diagram of diffusion and generative processes in DiffGui. b The details of the DiffGui structure.

as they can now be inferred from the dynamic atom distances within a
specified range, rather than relying solely on the static values. In the
second phase, the atom types and positions are both perturbed to
their prior distributions. By this means, the model circumvents learn-
ing bond types with bond lengths that significantly deviate from the
ground truth during the diffusion process. The E(3)-equivariant GNN is
also modified to update the representations of both atom and bond
within the message passing framework. Since atom coordinates are
continuous while atom/bond types are discrete, we utilize a Gaussian
distribution to model the former and categorical distributions to
represent the latter. Thus, the joint molecular distribution can be
formulated as a product of atom coordinate distribution and atom/
bond type distributions.

In addition to the protein pocket, molecular properties are also
considered as a distinct condition that is incorporated into the atomic
features. Instead of sampling along the gradient direction of a label-
specific classifier*s, we embrace classifier-free guidance that jointly
trains the unconditional and conditional models by randomly setting
the property label to a null taken ¢ with a probability. This simplifies
the training pipeline, as it eliminates the need for training an additional
label classifier. During the reverse process py(x'~1|xt, p, c), the sam-
pling can be performed using a linear combination of the conditional
and unconditional score estimates, where y is a parameter that con-
trols the strength of property guidance (Fig. 1b). Besides, due to the
strong relationship between the bond type and bond length, the
generation of atom positions is further guided by the confidence of a
bond predictor, which takes the atom types and coordinates as input
to predict the bond types. In this manner, the atoms can be placed in
the correct positions, thus facilitating the generation of accurate 3D
conformations of molecules. For an in-depth exploration of DiffGui
and its underlying methodologies, please refer to the Methods section
for more details.

Quality of generated molecules

As previously stated, we mainly rely on two key metrics, JS divergence
and RMSD values, to compare the sub-structural and global geometry
of molecules generated by diverse methods. The JS divergence® is a
method of measuring the similarity between two probability dis-
tributions. It is a symmetrized and smoothed version of the Kullback-
Leibler (KL) divergence®, and lower JS values indicate greater

similarity. Hence, JS divergence is employed here to assess the extent
to which the sub-structures of generated molecules can effectively
capture the true geometric distributions presented within the refer-
ence ligands. As displayed in Figs. 2 and 3, comparing with other
generative models (ResGen®®, PocketFlow®, GCDM*, TargetDiff*,
DiffSBDD**, and PMDM?®, briefly explained in the Methods section),
DiffGui achieves the lowest JS divergences of 0.1815 and 0.0486 in the
distributions of C-C bond distance and all-atom pairs distance,
respectively, when evaluated on the PDBbind dataset. The true C-C
bond distance (Fig. 2) predominantly spans the range of 1.3 to 1.6 A,
featuring two distinct peaks located approximately at 1.4 and 1.5 A.
Despite presenting two peaks, DiffSBDD and PMDM have peak den-
sities that do not closely align with the ground truth, whereas ResGen,
PocketFlow, and TargetDiff exhibit a single peak at around 1.4 A. The JS
divergence of GCDM approaches that of DiffGui, yet remains slightly
higher. Regarding the distance between all-atom pairs (Fig. 3), three
prominent peaks emerge approximately at 1.5, 2.5, and 3.5A in true
distribution, accompanied by shoulders extending between 4 and
6.5 A. In matching the true distribution, ResGen, GCDM, and PMDM
perform poorly, while PocketFlow, TargetDiff, and DiffSBDD demon-
strate suboptimal performance. This signifies their inability to ade-
quately model both the short- and long-range molecular interactions.
On the CrossDocked dataset, DiffGui attains the second-lowest JS
divergences of 0.1923 and 0.0704 in the distributions of C-C bond
distance and all-atom pairs distance, respectively, as depicted in Sup-
plementary Figs. 1 and 2.

Furthermore, to facilitate a more comprehensive evaluation, we
have calculated the average JS divergences of bonds, angles, and
dihedrals in generated molecules across different methods. The
values are listed in Table 1. In comparison to other baselines, DiffGui
exhibits the lowest JS divergence among all metrics on the PDBbind
dataset, while achieving either the lowest or highly comparable
values on the CrossDocked dataset. The better performance of
DiffGui on PDBbind over CrossDocked is primarily because our
model was trained specifically on PDBbind, which allows it to capture
the underlying patterns and features within this dataset more
effectively. As a result, the model is able to leverage the knowledge it
has acquired to make more accurate predictions when evaluated on
PDBbind. The CrossDocked dataset differs from PDBbind in various
aspects, such as data distribution, complex structure, and binding
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Fig. 2 | Comparison of the distributions of C-C bond distance for the PDBbind
dataset. a ResGen, (b) PocketFlow, (c) GCDM, (d) TargetDiff, (e) DiffSBDD, (f)
PMDM, (g) DiffGui. The reference molecules and generated molecules are depicted

by gray and colored lines, respectively. Jensen-Shannon divergence of C-C bond
distance within 2.0 A (JS. CC_2A) is listed on the top of each sub-figure. Source data
are provided as a Source Data file.

affinity range. Due to the absence of a true affinity label, we cannot
train DiffGui on this dataset. However, the fact that our model is able
to perform reasonably well on this different dataset indicates that it
has good generalization capabilities and it learns the generalizable

features that are not limited to the PDBbind dataset. Overall, the
results underscore the ability of our method to more accurately
capture the entanglement of 3D molecular information conditioned
on the protein pockets, thereby generating molecules that exhibit a
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higher degree of rationality on chemical structures. The detailed JS
information on 20 covalent bond types, 13 bond angle types, and 15
dihedral angle types is presented in Supplementary Tables 1-6.
Although DiffGui does not obtain minimum JS scores on certain

individual items, it is superior to other methods in light of its lowest
mean values and overall performance.

The global geometry of the generated 3D conformation is assessed
by computing the RMSD values between the original conformations

Nature Communications | (2025)16:7928


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63245-0

10 ©
HEEAE
Odooo
=H|q|H P
312|883
Eol§alal2
ao|jo|o|o|o
o 10
I
o|lo|o|o|o
E-H+I+I+I+I

N
a xS |S
ISR b
o o|lo|c|o|o

© [~

SR
a|c|o|oc|od|o
g+|+|+|+|+,

o o |
wco%ooo'@
E(S|0 |3 (S|0
B8 o|lo|c|o|o
oo} ()
£ S(=|92(2
5|9|o|oc|o|o
46+I+I+I+|+I

~
o 2|6 |N|s (B
s YN ||
- oc|o|o|o|o

@ e|6 |||

2 c|o|S|c|o

=E+I+|+I+I+I

g 182|203

- QX[ (I (I[®

goooooo

e

(]

el

©

B

2

oo}

e [2«[812]18(5

U,O\—..‘~.
T|lo|o|2|9]|o

'Ga,'+|+|:r'+'+|

cE |%2|5|3|3|R

8 |18b|d | S|

» |a|o|o|o|o|o

©

c

(1]

Ko

=

(9]

2

(2] ©

g Il=12(2|o
oloc|9|o|o

"55+|C+>,+I+l+|

= 09| ]|®
ml\‘—LOLDC")

S |3 || |r(d

O (g|lo|o|o|o|o

s

L d

[

Q0

0

(9]

%] —~

c &

g SIEIEISIE

2 1:%1%121%%

o (2|g|2|g|B|e

2 |8 cs|o|2s|o

= |w|o|c|=|9]|c

T (S0 c|T|Q|w®

(/2]

-

Q

(o]

©

™

S

o

< g

- |alo 8

-

o |25 P

9 (a2 @
@ [}

Q |& 2 o

QS |82 =

'_Qn. O

0.404 +0.06 0.422+0.08 0.490+0.19 0.441+0.1 0.481+0.1 0.544 £ 0.13 0.423+0.13

dihedrals (V)
JS divergence is computed on the distributions of bond, angle, and dihedral. Bold fonts indicate the best results.

~
&
N’

. 0.693 1.126 0.767 1.353 1.326 0.875 1.219
<
2 4
kel
=l
©
£
e 3
c
o
O
o
D 2
.
£
=
Q
!
w—
o
[a]
(%]
Zo
ResGen PocketFlow GCDM TargetDiff ~ DiffSBDD PMDM DiffGui
Method
(b)’\ 0.281 0.778 0.576 1.221 1.140 0.881 1.103
<6
%)
5
=5
©
£
O 4
=
c
o
o
- 3
Q
S
T2
<
Q
G
[a)
(%]
Zo
ResGen PocketFlow GCDM TargetDiff ~ DiffSBDD PMDM DiffGui
Method

Fig. 4 | Comparison of conformational similarity between generated and
optimized/predicted structures for the PDBbind dataset. a RMSD distributions
between generated and optimized conformations, (b) RMSD distributions between
generated and predicted conformations. Median RMSD value is listed on the top of
each sub-figure. Each method samples 10,000 molecules, collecting one optimized
conformation and twenty predicted conformations per molecule. The statistical
descriptors for each box plot (minimum, maximum, median, and 25th/75th per-
centiles) are provided in Supplementary Table 17. Source data are provided as a
Source Data file.

extracted from the generative models and the optimized/predicted
conformations produced by the RDKit software (https://www.rdkit.org/).
The generated conformation is optimized by the Merck Molecular Force
Field (MMFF)*, while 20 conformations are predicted for each molecule
using the ETKDG conformation generation algorithm®, followed by
relaxation using the UFF force field®. In Fig. 4 and Supplementary Fig. 3,
we visually depicted the RMSD distributions by violin plots, with the
median RMSD values displayed at the top of each sub-figure. Among the
entire spectrum of models, ResGen and GCDM stand out as they reveal
the two lowest median RMSD values on both PDBbind and CrossDocked
datasets. Meanwhile, the remaining models showcase comparable levels
of RMSD, with the highest median value being below 1.6 A. The lower
RMSD values of ResGen and GCDM can be attributed to distinct reasons.
ResGen, as an autoregressive model, is prone to premature termination
during generation, often producing small molecular fragments instead
of complete molecules. GCDM adopts a fully-connected 3D graph that
imposes significant computational costs for large molecules. This forces
the model to simplify the generation process and prioritize the frag-
mentary outputs. In short, DiffGui consistently achieves ~1 A RMSD for
all scenarios, indicating its efficacy to generate molecules with appro-
priate sizes and plausible 3D conformations that optimally fit protein
binding pockets.

For the percentage of ring sizes (Supplementary Tables 7 and 8),
five- and six-membered rings constitute the majority (exceeding 95%)
of rings in the reference molecules. Conversely, rings composed of
three, four, seven, eight, and nine atoms are scarce due to their low
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Table 2 | Basic molecular metrics of generated molecules for the PDBbind dataset

Metrics ResGen PocketFlow GCDM TargetDiff DiffSBDD PMDM DiffGui
Atom Stab. (1) 0.7849 0.8803 0.9507 0.9107 0.9039 0.7501 0.9509
Mol. Stab. (1) 0.0738 0.3159 0.3423 0.1666 0.2945 0.0948 0.4069
PB-valid. (1) 0.8805 0.9100 0.6101 0.8966 0.6792 0.7061 0.9537
RDKit-valid. (1) 0.7205 0.8488 0.8172 0.7500 0.7895 0.8138 0.8722
Novel. (1) 1.0000 0.8703 0.9923 0.9984 0.9920 0.9844 0.9942
Unig. (1) 0.8861 0.6074 0.8377 0.9969 0.9859 0.9545 0.9812
Sim. Ref. (V) 0.3749 0.4098 0.4267 0.4913 0.4628 0.4882 0.3261
Inter. Sim. (1) 0.4160 0.4444 0.3708 0.6063 0.5646 0.4393 0.6353
Bold fonts indicate the best results.

Table 3 | Average molecular properties of reference ligands and generated molecules for the PDBbind dataset
Metrics Ref. ResGen PocketFlow GCDM TargetDiff DiffSBDD PMDM DiffGui

Vina Score (V) -7.747+3.56 -2177+1.68 -3.596+£1.80 -2.095+1.29 -5.263+2.54 -5.011+£2.28 -4.990 +2.41 -6.700+2.55
Vina Min (V) -8.605+2.44 -4.704+2.16 -4.823+1.85 -3.545+1.49 -6.959+2.58 -5.894+2.22 -6.516 £2.61 -7.655+2.51
Vina Dock (V) -9.133+2.14 -7154+£229 -6.245+2.00 -5.130+1.66 -8.195+2.23 -6.853+2.03 -7.577+2.54 -8.448+2.24
QED (1) 0.459+0.22 0.577+0.15 0.501£0.17 0.477+0.13 0.460+0.22 0.466+0.19 0.474:0.21 0.631+0.21
SA (1) 0.720+0.10 0.784+0.1 0.784+0.15 0.706+0.13 0.604+0.13 0.633+0.13 0.607+0.15 0.678+0.15
LogP 1.731+£2.74 1.749+1.88 2.855+1.80 0.807+1.67 1.707+2.38 1.384+2.02 1.515+2.60 1.977+£3.01
TPSA 115.91+£69.43 60.11+£29.91 38.46+45.58 53.45+34.28 103.06+60.60 85.66 +45.87 117.74+130.83  100.49+62.97

Bold fonts indicate the best results. Statistical analyses are performed using two-sided paired t tests without adjustment for multiple comparisons.

chemical stability, limited synthetic accessibility, and notably high
toxicity. Among all the methods evaluated, DiffGui emerges as the one
that most closely replicates the percentages of five- and six-membered
rings found in the reference molecules. ResGen and PocketFlow
exhibit a tendency to generate a higher proportion of six-membered
rings and a corresponding decrease in five-membered rings. GCDM,
TargetDiff, DiffSBDD, and PMDM, on the contrary, yield fewer six-
membered rings. It is also worth noting that our method displays an
elevated proportion of seven-membered rings, which account for
around 10% of all rings. This feature is commonly observed in methods
using diffusion models, such as GCDM, TargetDiff, DiffSBDD, and
PMDM. It represents a limitation of current diffusion-based approa-
ches and raises an intriguing direction for future improvements. Dif-
fusion models typically treat atoms as nodes and, during the inference
stage, the initialization of ligand atom’s number is primarily deter-
mined by the number of atoms within the protein pocket. Occasion-
ally, this initialization might result in a slight excess of one or two
atoms. This slight imbalance may favor the formation of seven-
membered rings, which serve as a way to accommodate the extra
atoms while maintaining the structural stability and connectivity
within the generated molecules. Constructing diffusion models at the
scale of a molecular fragment could address this issue. By focusing on
pre-defined fragments rather than individual atoms, the model might
be more adept at managing variations in atom number and mitigating
the propensity to form seven-membered rings. This fragment-based
approach could also utilize the statistical patterns and chemical
properties of known fragments, guiding the generation process
towards more pharmacological relevant and synthetically accessible
molecules.

Molecular metrics and properties of generated molecules

We have calculated the basic molecular metrics of generated mole-
cules to assess the generative abilities of various methods. As shown in
Table 2 and Supplementary Table 9, our method, DiffGui, demon-
strates superior performance over other methods in terms of atom

stability, molecular stability, PB-validity, and RDKit-validity. Regarding
novelty and uniqueness, except for PocketFlow, the variations among
different methods are relatively minor, with their respective values all
approaching 1.0. Besides, DiffGui exhibits the lowest 2D similarity and
the highest protein-ligand interaction similarity when compared to
other approaches. This indicates that DiffGui is capable of generating
more novel molecular scaffolds while maintaining interactions with
key binding site residues. In addition, the generated molecules serve as
the basis for computing an array of crucial molecular properties,
including Vina Score, QED, SA, LogP, and TPSA. The mean values of
these properties are summarized in Table 3 and Supplementary
Table 10. In terms of performance on the PDBbind dataset (Table 3),
DiffGui outperforms other models on nearly all metrics except for SA,
suggesting that it is capable of generating more tightly binding drug-
like molecules. The AutoDock Vina program®* is utilized to estimate the
binding affinity, and three types of scores (Vina Score, Vina Min, and
Vina Dock) are reported. The Vina Score is computed directly on the
generated 3D conformations, while the Vina Min and Vina Dock are
calculated after local minimization and redocking of the generated
molecules, respectively. DiffGui reveals the lowest values (- 6.700,
-7.655, and -8.448) in these three Vina scores, demonstrating its
superiority to create potential binders with higher affinity for given
pockets. Moreover, DiffGui surpasses other methods on the QED
metric, which is indicative of its capability to generate more drug-like
molecules. The LogP values of all methods range from 1.384 to 2.855,
fitting within the universally recognized LogP range (1~ 3) of drug-like
molecules. Although ResGen and PocketFlow show the highest SA
scores of 0.784, they possess low TPSA values of 60.11 and 38.46,
respectively. This validates the trend of autoregressive models to
generate small fragments that may not fully occupy the entire pocket
and thus compromise their specificity towards protein targets. Among
the diffusion models that tend to generate complete molecules, Diff-
Gui distinguishes itself with the highest SA score of 0.678. In brief,
DiffGui excels over other baselines when assessed through the afore-
mentioned molecular properties. This superior performance can be
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ascribed to the guidance of chemical bonds and property labels in our
approach, which directs the reverse diffusion process toward the
generation of molecules with desired characteristics.

In the evaluation of the CrossDocked dataset (Supplementary
Table 10), even though the molecules generated by DiffGui do not
attain the highest level of docking score, they showcase competitive
results (highlighted in gray) against the best method. Besides, it is
noteworthy that the Vina scores achieved by DiffGui are lower than
those of the reference ligands for this dataset (especially after mini-
mization and redocking), a phenomenon that is not observed in the
PDBbind case. The reason could be that the PDBbind dataset, derived
from experimentally determined protein-ligand complex data,
involves more challenging ligands. In contrast, the ligands in the
CrossDocked dataset are not native binders and may form unrealistic
interactions within the binding sites. This hypothesis is further con-
firmed by the lower Vina scores of reference molecules in the PDBbind
dataset. The SA and TPSA scores continue to expose the inherent
drawback of autoregressive models (ResGen and PocketFlow), which
tend to produce small fragments by sampling the local optimum atom
instead of considering the global information of the ligand.

Ablation analyses

To investigate the impact of individual components on model per-
formance, we conducted ablation experiments on the PDBbind dataset
and obtained three variants of the full DiffGui model: (1) DiffGui-
nobond, a model trained without the bond diffusion process; (2)
DiffGui-nolab, a model trained without property label guidance; (3)
DiffGui-noboth, a model trained without both above modules. The
generation ability of different models and the quality of generated
molecules are displayed in Supplementary Tables 11 and 12, respec-
tively. It appears that the two techniques are devoid of any significant
detrimental effect on the basic metrics, including validity, con-
nectivity, novelty, uniqueness, and diversity (Supplementary Table 11).
Notably, the validity (0.9427) of DiffGui-nolab is higher than those of
other models, which is reasonable because apart from the benefits of
property guidance, it also inferences with the normal generation
process to a certain extent. As shown in Supplementary Table 12, the
removal of bond diffusion or property guidance leads to a deteriora-
tion in model performance across the JS divergences (detailed infor-
mation in Supplementary Tables 13-15), Vina scores, and QED metric.
Furthermore, the simultaneous exclusion of both modules results in an
even more pronounced decline in performance, thus validating their
synergistic effects. The values of SA, LogP, and TPSA are all situated
within reasonable ranges. Overall, the ablation study demonstrates
that the components of bond diffusion and property guidance can
contribute to the generation of more realistic molecules with
enhanced 3D structural rationality and desired molecular attributes.

De novo drug design on protein targets

Given that GCDM underperformed all comparable methods on three
Vina Scores (Table 3 and Supplementary Table 10), we excluded it from
the following de novo drug design experiments. We selected 1w51, 3ctj
(PDBid) from the PDBbind test set and 7ew4, 8jué6 (PDBid) outside the
PDBbind dataset as protein targets. The binding sites of experimen-
tally active compounds are utilized as pockets to enable protein-
conditioned molecule generation by various methods. The protein
targets of 1w51, 3ctj, 7ew4, and 8jué correspond to beta-secretase 1,
tyrosine kinase, G protein-coupled receptor, and ion channel, respec-
tively, covering diverse types of proteins. We generated a set of 100
molecules for each target/model and visualized the ligands with the
best docking scores among those PB-valid in Figs. 5 and 6. Essentially,
the molecules produced by DiffGui possess better-defined chemical
structures, higher docking scores and more favorable molecular
properties when benchmarked against active molecules and those
produced by alternative methods. They closely resemble the binding

poses of positive ligands and fully occupy the designated binding
pockets. Furthermore, the binding free energies (AG) of these mole-
cules are calculated by the MMGBSA method®. As shown in Supple-
mentary Table 16, while the binding free energy does not perfectly
correlate with the docking score, the overall trend persists, and the
ligands generated by DiffGui exhibit the lowest AG values among all
produced ligands. Remarkably, with the exception of 3ctj, our model
generates molecules with lower AG values than the reference ligands,
further substantiating its capability to identify high-affinity ligands for
a variety of protein targets. The 3D pharmacophore overlap between
the generated molecules and reference ligands is computed by
Schrodinger’s Maestro program. As displayed in Supplementary Fig. 4,
the molecules generated by DiffGui possess the highest number of 3D
pharmacophore overlaps for 1w51 and 3ctj. However, for transmem-
brane proteins (7ew4 and 8ju6) in Supplementary Fig. 5, DiffGui does
not demonstrate a notable advantage over other methods. This dis-
crepancy arises because, unlike 1w51 and 3ctj, the reference ligands in
7ew4 and 8jué disclose limited interactions with the binding pocket
residues. Consequently, our method prioritizes the creation of novel
pharmacophores to establish new interactions with crucial residues,
rather than replicating the sparse binding patterns of the reference
ligands.

In contrast, ResGen prefers to create small molecular building
blocks that are confined in sub-pockets and may cause off-target
effects. Despite displaying high SA scores, their Vina scores are rela-
tively poor, with even a positive value (2.003) in the case of 1w51 (beta-
secretase 1, Fig. 5a). PocketFlow favors the generation of linear mole-
cules with alternating single and double bonds. These molecules are
fairly flexible and may possess low drug-likeness. In 3ctj (tyrosine
kinase, Fig. 5b), the alkene group even protrudes outside the pocket,
hindering the protein-ligand interactions and ultimately leading to the
reduced docking score. Molecules generated by TargetDiff typically
have superior docking scores in comparison to the molecules pro-
duced by other methods. However, there exist several limitations in
their chemical structures that impair the structural rationality and
synthetic accessibility. First, seven-membered rings or even larger
ones, that are uncommon in drug-like molecules, frequently occur in
the generated structures. Second, the fused rings are not aromatic, and
these non-aromatic structures have low chemical stability and high
synthesis difficulty. Last but not the least, the molecules in 7ew4
(GPCR, Fig. 6a) and 8ju6 (ion channel, Fig. 6b) incorporate six-
membered rings accompanied with only two double bonds. None-
theless, these rings are expected to be aromatic when judging from
their planar conformations and overall molecular structures. Hence,
we conclude that the post-operation of adding chemical bonds via the
OpenBabel toolkit*® cannot guarantee the accuracy of bond types.
Moreover, the 3D conformation of the molecule in 1w51 undergoes
distortion to accommodate the pocket shape, probably giving rise to
its high strain energy. The other two diffusion-based methods,
DiffSBDD and PMDM, generate molecules that bind more loosely than
our method. Their chemical structures are also unreasonable. For
instance, in the 1w51 case, the molecule of DiffSBDD has three-
membered and seven-membered rings, while the molecule of PMDM
forms a macrocyclic ring with two consecutive peptide bonds. In the
cases of 7ew4 and 8ju6, DiffSBDD yields macrocyclic compounds with
multiple hydroxy groups, which contribute to their low LogP values
and reflect their high hydrophilicity. The molecules of PMDM in the
pockets of 3ctj and 7ew4 both feature three seven-membered rings,
whereas the ligands entirely lack aromatic groups. This structural
characteristic is consistent with the high proportion of seven-
membered rings (21.2% in Supplementary Table 7 and 17.6% in Sup-
plementary Table 8) observed in PMDM-generated molecules.

In addition, to examine the diversity of molecules generated by
DiffGui, we visualized the top-ranked ligands for protein targets of
4b5d, 5ni7, and Sywy (PDBid) in Supplementary Fig. 6. These targets
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Fig. 5| Molecules generated for targets from the PDBbind test set. The protein targets of 1w51 (a) and 3ctj (b) are beta-secretase 1 and tyrosine kinase, respectively. The
visualized molecules have the best docking scores among those PB-valid.

are Capitella teleta AChBP, nuclear receptor ROR-gamma, and pros-
taglandin E2 receptor, respectively. All generated molecules fit per-
fectly with the 3D geometry of the pockets, whether they are shallow
or deep. The generated molecules are diverse and exhibit better
docking scores and properties than the reference ligands. Besides, the

diversity of molecules produced for the PDBbind test set is computed
to be 0.7256 (Supplementary Table 11), thus proving that our method
can provide various promising candidates that can be employed for
further drug development. Moreover, we conducted wet-lab experi-
mental validation on molecules generated for RSK4 (ribosomal S6
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Fig. 6 | Molecules generated for targets outside the PDBbind dataset. The protein targets of 7ew4 (a) and 8ju6 (b) are G protein-coupled receptor and ion channel,
respectively. The visualized molecules have the best docking scores among those PB-valid.

kinase 4, PDBid 6g77), a protein structure not included in the PDBbind
dataset. Only two simple molecules are selected because of their rapid
and straightforward synthesis. As illustrated in Supplementary Fig. 7a,
b, despite their structural differences, both Compound 1 and Com-
pound 2 demonstrate potent inhibitory activity in the HTRF assay, with

ICso values of approximately 215.0nM and 111.1nM, respectively,
highlighting their potential as lead compounds for further develop-
ment. The binding modes reveal that both compounds interact with
key residues (K105, D153, L155, and K221) in the binding pocket
of RSK4.
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Fig. 7 | Lead optimization by fragment denoising method on PDBid 3113. a Fragment growing, (b) Fragment linking - two fragments, (c) Fragment merging - three

fragments. The seed fragments are highlighted in orange.

Lead optimization based on fragments

In drug discovery, lead optimization is a critical task to refine the
existing lead compounds for improved affinities and drug-like prop-
erties. Based on the sub-structures or fragments of known drug can-
didates, fragment growing and scaffold hopping are two effective
strategies to perform lead optimization. Fragment growing expands
the small fragments into the complete molecules by adding functional
groups or larger sub-structures. Scaffold hopping replaces the core
structure of the lead compound by an alternative core with the pur-
pose of enhancing its biological activity and potency. We enable our
model to implement the above task by adopting two sampling meth-
odologies - fragment denoising and fragment conditioning. Fragment
denoising manually diffuses the fixed fragment at every step, subse-
quently denoising it along with the remaining part from the previous
step. For the next iteration, the denoised fixed fragment is discarded,
while the other part is retained. Fragment conditioning inputs the fixed
fragment at every step as an additional condition, and the complete

molecule is obtained by denoising the fixed fragment and the denoised
remaining part at the last step. For more details of these two sampling
techniques, please refer to the Methods section.

As illustrated in Fig. 7, we applied the fragment denoising method
on PDBId 313 to develop potential inhibitors based upon the structure
of the active ligand. The protein target of 3113 is phosphoinositide-3-
kinase (PI3K), an enzyme involved in numerous cellular functions, such
as cell growth, proliferation, differentiation, motility, survival, and
intracellular trafficking®. It plays a crucial role in the PI3K/AKT/mTOR
signaling pathway, and dysregulation of PI3K signaling is often asso-
ciated with various diseases, including cancer, diabetes, and auto-
immune disorders. Thus, the inhibitors of PI3K can be used to treat
certain cancers and inflammatory conditions. In Fig. 7a, thienopyr-
imidine (highlighted in orange) is fixed as a seed fragment to generate
molecules via fragment growing. The generated ligands successfully
replicate most of the interactions found in the native protein-ligand
complex, specifically with Lys802, Ala805, Asp841, Tyr867, Val882, and
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Asp964. However, the interacting functional groups in these ligands
are distinct from the original ones. For instance, the morpholine group
is substituted by furan and pyrazole. The piperazine sulfonyl group is
replaced by pyrrolidine sulfonyl, cyclized piperazine sulfonyl, and
piperazine carbonyl groups. This illustrates that DiffGui can not only
learn the interaction patterns in protein-ligand complexes, but also
assimilate the structural information of numerous chemical groups. In
Fig. 7b, ¢, two and three fragments are provided, respectively, to
conduct scaffold hopping (fragment linking or merging), where the
core scaffold of the active ligand is transformed into alternative scaf-
folds. The Vina, QED, and SA scores of the generated molecules are
either better than or at least competitive with those of the reference
compound. Therefore, taking into account the overall performance,
our method effectively achieves the goal of lead optimization, whether
through fragment growing or scaffold hopping strategies.

The fragment conditioning method is applied to PDBid 6e23, with
the results visualized in Supplementary Fig. 8. The protein target of
6e23 is WD repeat-containing protein 5 (WDR5), a crucial protein
involved in chromatin remodeling and gene expression regulation. It
belongs to the WD-repeat protein family and plays essential roles in
various cellular processes, including embryonic development, stem
cell pluripotency, and cancer progression. Its dysregulation is asso-
ciated with several diseases, making WDR5 an important target for
therapeutic interventions and research in epigenetics and cancer
biology”. As depicted in Supplementary Fig. 8, the molecules gener-
ated by DiffGui through fragment growing, linking, and merging
exhibit either superior or comparable QED and SA scores compared to
those of the reference ligand. However, the estimated binding affinities
of these molecules are not higher than the reference, thereby eluci-
dating that the fragment conditioning method may not be suitable for
direct use without retraining on the specialized dataset. It forcibly
injects the condition of a fixed fragment at every denoising step,
whereas the DiffGui model is not trained on the combined data of the
fixed fragment and the denoised remaining part. This would lead to an
inconsistency problem between the training and the sampling
processes.

We further verified the effectiveness of lead optimization of
DiffGui through wet-lab experiments on a non-kinase target, dihy-
droorotate dehydrogenase (DHODH). From the structures of 4zmg
and 4Is1 (PDBid), the lead optimization is conducted on the basis of the
fixed fragments (highlighted in orange in Supplementary Fig. 7c, d). As
a result, the optimized molecules (Compounds 3 and 4) exhibit
enhanced potency against DHODH, with /Cso values decreasing from
8.02uM to 4.27puM and from 32.20nM to 10.45nM, respectively.
Compound 3 features a thiazole ring modified with both carboxylic
acid and methyl substituents. The carboxylic acid moiety engages in a
salt bridge interaction with R136, while the methyl group inserts into a
hydrophobic sub-pocket formed by residues V134, V143, and Y356.
Compared to the original ligand, Compound 4 involves the conversion
of a carboxylic acid to a hydroxamic acid, which extends the hydrogen-
bonding network to incorporate additional interactions with Q47 and
T360. A fluorine atom is evolved on the benzene ring to occupy the
hydrophobic sub-pocket identified previously. And, a methyl group is
introduced on the linker moiety to fill a distinct hydrophobic cavity
surrounded by L46, A55, and L58.

Molecular generation for mutated targets

As DiffGui is a pocket-aware molecule generation model, we con-
ducted experiments on wild-type and mutated targets to investigate its
sensitivity to subtle variations within the pocket structure. We chose
KRAS®?P (PDBid 7rpz) as an example. KRAS®'? is a specific mutation of
the KRAS gene, where the glycine (G) at position 12 is replaced by
aspartic acid (D). The G12D mutation leads to the constitutive activa-
tion of the KRAS protein, which drives the uncontrolled cell growth
and division, contributing to cancer development and progression.

Due to its significant role in oncogenesis, KRAS®'? is a critical target for

cancer research and therapeutic development®®. The distinct binding
patterns of the native ligand (MRTX1133) and the generated molecules
for KRAS®? and its mutants are shown in Supplementary Fig. 9.
MRTX1133 optimally fills the switch Il pocket and extends three sub-
stituents to form noncovalent interactions with seven key residues
Aspl2, Glu62, Tyr64, Arg68, As69, His95, and Tyr96, resulting in a K of
0.2 pM*s. This exceptionally high binding affinity is also evidenced by
its remarkably low Vina score (-12.877). The protein mutants include
both single-point and multi-point mutations. The single-point muta-
tions transfer each of the key residues to alanine. In multi-point
mutations, Aspl12Glu62Ala converts both Asp12 and Glué62 to alanine.
‘Interact’ refers to the protein in which all interacting residues are
mutated to alanine, while ‘Pocket-mu’ denotes the protein where all
pocket residues (residues within 10 A of the reference ligand) are
mutated to alanine.

For the wild-type protein, the generated molecule maintains the
hydrogen bond with Arg68 and the salt bridges with Asp12/Glu62. As a
comparison, in the Aspl2Ala and Glu62Ala mutants, the relevant salt
bridge disappears, and the electronegative groups, such as carboxylic
acid or methyl phenyl ether, replace the positive amine groups at the
corresponding positions. Since Tyr64Ala mutates Tyr64 to alanine, the
-t interaction between the resulting molecule and the residue at
position 64 is absent. A phenyl group is developed to occupy the space
of Arg68 in Arg68Ala, while the hydroxy group that forms a hydrogen
bond with Asp69 is missing in Asp69Ala. In the mutants of His95Ala
and Tyr96Ala, the aromatic system of generated molecules is extended
to occupy the position of the original residue, forming stronger m-mt
interaction with Tyr96 and His95, respectively. However, these inter-
actions are weaker in the wild-type protein due to the close distance
between these two residues. Additionally, the salt bridges with Asp12
are reserved in the Asp69Ala and His95Ala mutation systems. There-
fore, the single-point mutations of key residues significantly affect the
chemical structures of molecules generated by DiffGui. Although the
generated ligands for the mutants exhibit relatively higher docking
scores, their QED, SA, and LogP values demonstrate notable
improvements over the reference ligand.

The multi-point mutations exert more profound influences on the
generated molecules as they further alter the protein pocket envir-
onment. In the Asp12Glu62Ala mutant, the salt bridges with residues at
12 and 62 positions both vanish, whereas the hydrogen bonds with
Tyr64, Arg68, and His95 are conserved. The ‘Interact’ mutation system
with seven key residues mutated facilitates the production of a mole-
cule with several hydrophobic groups, like isopropyl and isopentyl.
This variation not only extinguishes most electrostatic interactions in
the complex but also increases the LogP value of the molecule to 5.665,
indicating lower binding affinity and higher hydrophobicity of the
ligand. The pocket mutation system (‘Pocket-mu’) further decreases
the estimated binding affinity (Vina score —5.730) of the resulting
molecule, leading to a loss of specificity in binding with the pocket of
KRAS®?, In conclusion, the mutation experiments fully testify to the
sensitivity of the DiffGui model to the delicate changes within the
pocket environment. Although the generated molecules do not bind as
tightly as the reference ligand because of its extremely high affinity
and the residue mutations, they exhibit higher drug-likeness and syn-
thetic accessibility, which may be attributed to the property label
guidance utilized during the generation process.

Discussion

Generating 3D potent molecules inside the protein pockets is of great
significance, yet it remains a challenging task. In this study, we propose
a novel guided diffusion model, DiffGui, to generate ligand molecules
for any given protein target. By integrating bond diffusion and prop-
erty guidance into the diffusion process, DiffGui enables the simulta-
neous generation of atoms and bonds in molecules, which exhibit high
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structural rationality and desirable molecular properties. To incorpo-
rate bond diffusion with atom diffusion, we apply distinct noise
schedules to atoms and bonds, thus effectively capturing the depen-
dencies between interatomic distances and bond types. Moreover,
property labels of molecules are injected into the atomic features,
transforming the training process into a blend of conditional and
unconditional modeling frameworks, and guiding the inference pro-
cedure to yield molecules with anticipated attributes.

Experimental results validate that DiffGui attains SOTA perfor-
mance on the PDBbind dataset and competitive results on the Cross-
Docked dataset. It greatly improves the quality of generated
molecules, which more closely resemble the reference molecules in
terms of the distributions of bond length, bond angle, dihedral angle,
and ring percentage. Besides, we can conclude that DiffGui excels at
generating novel and diverse molecules that bind more tightly to
disease-relevant targets while preserving preferable drug-likeness.
Through the adoption of specialized sampling algorithms, DiffGui is
capable of performing lead optimization via fragment growing and
scaffold hopping strategies, highlighting the versatility and applic-
ability of our method for downstream drug design tasks. Furthermore,
the effectiveness of DiffGui has also been validated by wet-lab
experiments. Case studies on wild-type and mutated KRAS proteins
indicate that DiffGui can not only reproduce the favorable interaction
patterns presented in the reference complex, but also detect subtle
variations in the protein environment. In summary, DiffGui deeply
comprehends the geometric constraints and molecular interactions in
the protein-ligand complexes and possesses enhanced generalization
capability for new targets.

In future work, we aim to develop target-aware molecular gen-
eration techniques based on fragments®>*°, which represent more
reliable and synthesizable molecular sub-structures. In addition, we
will delve into more sophisticated noise schedules and guidance
strategies to further improve the performance of deep generative
models. The intricate dynamics of the protein-ligand complex, along
with other key molecular properties such as pharmacokinetic/phar-
macodynamic profile, toxicity, and metabolism, will also be thor-
oughly considered. Overall, our objective is to greatly boost the
success rate and efficiency of drug discovery and development with
the assistance of Al technologies.

Methods
Task definition

Let p denote the protein pocket and x denote the 3D ligand. A ligand

N
molecule with N atoms can be represented as x={a,»,r,-,b,-j}” ¥
L]j=

where @; € {0,1}"« is the atom types, r; € R is the atom coordinates,
and b; € {0,1}"s is the chemical bonds. We select ten atom types,
including nine real atom types (C, N, O, S, P, F, Cl, Br, and I) and one
dummy absorbing type. In addition, we identify five chemical bond
types, consisting of four real bond types (single, double, triple, and
aromatic bonds) and one dummy absorbing type, which also indicates
no bond*. In this paper, we denote the molecular properties as ¢ €
RMe and focus on five specific properties, namely binding affinity, QED,
SA, LogP, and TPSA. Let superscript ¢ represent the latent variables at
timestep t(t=0,1, ..., T) and x° =x. In a word, the task of conditional
molecular generation here is to produce a series of x given p and c.

Overview of DiffGui model

Unlike the pure diffusion model*, DiffGui is a conditional guided dif-
fusion model, where the protein pocket and desired properties guide
the molecule generation process. Thus, we aim to model the py(x|p, ¢)
to determine the distribution of ligands that can bind to any given
protein pocket while possessing the desired properties. Formally,
DiffGui is a latent variable model represented as

Po(x°|p.€) = [pg(xOT)dx'T, where x* for t=1, ..., T is a sequence of
latent variables with the same dimensionality as the data
x° ~ p(x°|p,c). As shown in Fig. 1, the proposed DiffGui framework
consists of a forward diffusion process and a reverse generative pro-
cess, both defined as Markov chains. The forward process (Eq. 1)
progressively perturbs the data into a stationary distribution, while the
reverse process (Eq. 2) gradually denoises the samples back towards
the data distribution with a network parameterized by 6:

.
g(x*"ix°% p,c) = Hq (x‘1x"Lp,c) @

t=

T
Po(x 1 p, ) @
t=1

Po(x*T1xT, p, c) =

Since our goal is to produce 3D molecules inside the protein
pocket, the model needs to generate continuous atom coordinates,
discrete atom and bond types, while preserving SE(3)-equivariance
throughout the entire generative process. In the following sections, we
will elaborate on how we construct the diffusion process, parameterize
the generative process, and implement the classifier-free guidance of
molecular properties.

Molecular diffusion process

Building on recent progress in learning continuous atom coordinates
and discrete atom or bond types with diffusion models**¢, we employ
a Gaussian distribution A to model continuous atom coordinates and
a categorical distribution C to model discrete atom or bond types. The
forward diffusion process is formulated as follows:

qriirtLp,c)=N (rf

l—ﬁtff’l.ﬂtl> 3)
g@a=t,p,e)=cd|1 - BHal 7+ B1,) 4)

qb1b5 ", p, ¢)=C(b1(1 - b +BTy) 5)

where ' € [0,1] is the pre-defined noise scaling schedule, I ¢ R3*3 is
the identity matrix, and I represents a one-hot vector with a one at the
k-th position and zeros elsewhere. For the atom coordinates, we
gradually add scaled standard Gaussian noise. For the atom or bond
types, we increase the probability mass on the k-th or k*th type,
ensuring that these types are gradually perturbed toward the desired
types during the forward process. We refer to it as the absorbing type
because it functions by gradually assimilating all atom or bond types
into this specific category*°.

Denoting a‘=1— g and a‘=]]._,a%, a desirable feature of the
diffusion process is the ability to calculate the noisy data distribution
g(x*|x°, p, c) of timestep ¢ in closed-form:

qriix®,p,e)=N (rt| Vacry, (1 - a)1) )
waspo-clafed ea @) o
abyix°,p,c)=(bjlaby + (1- a1y @®)

Ast — T, we get q(rt|x°,p,c)—>N(0,)), g(atlx°,p,c) — 1, and
q(bf-j|x°,p, c) — Iy according to Egs. 6-8. This suggests that the
atom coordinates approximately approach the standard Gaussian
distribution for large T, while the atom and bond types place all
probability mass on the absorbing types when t=T. These
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distributions, known as prior distributions, will serve as the initial
distributions for the reverse process.

Since bond types in molecules are closely related to atom dis-
tances and atom types, applying the same noise schedule to bond
types as to atom types and positions may lead to inconsistencies in the
noised data distribution. Hence, we assign different 8 values for atoms
(types and positions) and bond types, ensuring that the information
level a‘ of bond types decays to zero much faster than that of atoms
during the diffusion process. In the first stage, the atoms are only
marginally perturbed, and the model pays more attention to disrupt
the bond types. In the second stage, almost all real bonds have been
removed, and the model concentrates solely on the perturbation of
atoms. This approach allows the model to avoid learning bond types
when atom distances have obviously deviated from the canonical bond
lengths.

Parameterization of molecular generative process

The generative process, conversely, aims to reconstruct the original
molecule x° from the initial noise x”. To achieve this, we approximate
the reverse distribution using a neural network parameterized by 6:

Po(ri X, p, €)= N (ri |pg(x', £, p, ©), B'Y) 9)

po(@tixt, p,e)=Caagx', ¢, p, ) (10)

pe ' 1x', p, €)= C(bj; ' 1be(x', £, p, ©)) (1n
where p1y, ag and by are all neural networks. An essential characteristic
that a neural network should possess for modeling 3D molecules is
E(3)-equivariance, i.e., the network’s outputs should be equivariant
under any 3D transformation, such as rotation, translation, and
reflection. There exist different ways to parameterize py, a, and by,
and in this case, we choose to predict x* by the above neural networks.
Drawing inspiration from MolDiff*® that utilized an E(3)-equivariant
network to update atom and bond representations through message
passing algorithms, we propose modeling the intricate interactions
between ligand and protein atoms using an SE(3)-equivariant GNN:

-1 ~f—1 pt-1
{’5 La;b } .=¢e(xf,t,p,c>=¢e({’f'“f"’3},~,~'t"""'> 2
ij ”

Formally,

N
pxj= {a,-,r,-, by}i,jzl
number of atoms in the protein-ligand complex and omit timestep ¢
for simplicity), we construct a complete graph in which vertices
represent the atoms and all vertices are connected. Let v; ¢ RY and
€ € R? denote the hidden representations for vertex i and edge (i),
respectively. The input vertex features comprise one-hot encodings of
atom types, while the input edge features are one-hot encodings of
bond types. The updates for the vectors v;, e;;, and the coordinates r;
are then defined as follows:

given an input proteinligand  complex

(we overload the notation N to denote the

& < ou(ey Iri— 1) 13

v; < Linear(v;) + Y ¢, (uj,e,j,t>

: (14)
J

+> Pe (Uk,éjk, t) + Linear (v;)

+ Lmear( ) + Lmear(e >

€ « Zkfpe (Vkrzki' t) 15)

rp<rt Zd’r( ir j’ y' )rl—rjz MIigand (16)
Il ri —rillz

where Linear(-) represents linear transformations of the inputs, and
b4 d, Pe, §. are neural networks composed of different multilayer
perceptrons (MLPs). Mg, is the ligand mask, which ensures that the
coordinates of protein atoms are not updated. The final atom features
v; and bond features e; are fed into a multi-layer perceptron and a
softmax function to obtam a; and b,j, respectively. The main difference
between our proposed model and MolDiff lies in our introduction of
the protein pocket framework, which deviates from the unconditional
molecular generation used in MolDiff. In the generative process, we
keep protein-related information fixed to enable the pocket-
conditioned molecular generation.

Classifier-free guidance of molecular properties

Guided sampling has emerged as a critical strategy in the development
of molecular diffusion models that are capable of generating samples
adhering to desired properties c. In this work, we adopt classifier-free
guidance to explicitly incorporate conditional signals. Distinct from
classifier guidance*®, which necessitates the inclusion of an additional
classifier, classifier-free guidance streamlines the model architecture
by directly integrating guided signals into the training phase, thereby
offering enhanced control and flexibility.

Formally, DiffGui consists of an unconditional model ¢ (x*, ¢, p, @)
and a property-conditional model ¢, (x*,¢,p,c). On one hand, the
unconditional model is trained on 3D structures of protein-ligand com-
plexes without property labels. On the other hand, the property-
conditional model has access to both molecular properties and the cor-
responding protein-ligand complex x! at each timestep ¢. During the
reverse generative process, we utilize a hyperparameter y to modulate the
strength of classifier-free guidance from the conditional model, so that

¥ =1+p)gp(x,t,p,c) — v (X', t,p, @) 17)

Training

In the training stage, we add noise to the data and train the neural
network to recover x~1 from x! by optimizing the predicted dis-
tributions  py(x*~!|x¢,p,c) to approximate the true posterior
g(x*1x%,x%,p,c), which can be derived from Egs. 3-8. The loss
functions are defined as follows:

L L;a; +A1L£tolm +/12Lbond (18)
Lhoy= NZM r g (x,t,p,c), I (19)
Liom=% ZDKL [q(ai'1x%,x, p,c) || po(ai "X, p.c)] (20
i
1 _
Lbohs = NZDKL[ (6 1x° %ol 1 po (B 1% pi€) )| )

where 1; and A, are pre-defined constants. We randomly sample a
timestep ¢ and optimize the neural networks by minimizing the total
loss L1, Supplementary Algorithm 1 describes the training process
with classifier-free guidance in detail.
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Sampling
To generate new molecules, we first sample x” from the prior dis-
tributions p(x7) and then iteratively sample from py(x*~1x¢, p, ) to
gradually remove noise. The prior distribution p(xT) is the standard
Gaussian distribution N(0, ) for atom positions, along with the cate-
gorical distributions for atom and bond types, where all probability
mass is assigned to the absorbing type. Supplementary Algorithm 2
describes the sampling process with classifier-free guidance in detail.
Two novel sampling methodologies (fragment denoising and
fragment conditioning) are proposed to perform lead optimization
based on known fragments. Fragment denoising (Eqs. 22 and 23) first
diffuses the fixed fragment x}’ at each step to obtain the hidden
information xf, which is then combined with the rest of the ligand x{ to
accomplish one-step denoising. In the next denoising step, the
denoised fragment part xt ! is discarded and the corresponding
information is retained through a step of forward diffusion. The final
molecule is produced by denoising from timestep 1 to 0. Fragment
conditioning (Eq. 24) consistently inputs the fixed fragment x/? ateach
step as context, which also includes information of protein pocket and
molecular properties. The final molecule is created by denoising the
fixed fragment x}) and the denoised remaining part x¢ at the last step.

a(xf1xp.p,c) =N (xf1Va'x?, (1 - a)1) 22)
T G £ gt 23
Xp X =P (Xp X 1P, € (23)
xiLxtl=¢ (xo xtt ) 24
X =g (xR, 20t p,c 4

Datasets

We utilize the PDBbind dataset for training/testing and the Cross-
Docked dataset only for testing. The PDBbind dataset®**is a collection
of experimentally determined three-dimensional structures of bio-
molecular complexes archived in Protein Data Bank (PDB), accom-
panied by binding affinity data (K K; or ICsp). The current 2020
version provides 23,496 biomolecular complexes, of which 19,443 are
protein-ligand complexes. For this dataset, we employ 17.3K com-
plexes for training, 1.8 K complexes for validation and 0.1 K complexes
for testing. The CrossDocked dataset® originally contains 22.5 million
poses of ligands docked into multiple similar binding pockets across
the PDB. Following the previous work”, we refine the dataset by
choosing binding poses with root mean square deviation (RMSD) less
than 1.0 A and split the refined data based on a threshold of less than
30% protein sequence identity. This results in 100,000 protein-ligand
pairs for the training set and 100 pairs for the test set. We do not train
DiffGui on the CrossDocked dataset due to the absence of affinity data;
instead, we only evaluate it on the CrossDocked test set. To ensure a
fair comparison, we retrain the baseline models on the PDBbind
dataset when evaluating them on this dataset. And we compare DiffGui
with the original baselines (trained on the CrossDocked dataset) to
assess the generalization capability of our approach. We sample 100
molecules for each protein in the test set to perform evaluation.

Evaluation metrics

We adopt a wide range of metrics to evaluate the quality of generated
molecules: (1) Atom Stability refers to the proportion of atoms that
possess the correct valencies. (2) Molecular Stability refers to the
proportion of molecules in which all constituent atoms are stable. (3)
PB-validity is computed using the PoseBusters tool®* to check whether
the generated molecular conformations have reasonable geometries,
including standard bond lengths, appropriate bond angles, and the
absence of steric clashes. (4) RDKit-validity measures the proportion
of generated molecules that pass the basic test of RDKit program. (5)

Novelty is the ratio of generated molecules that are not present in the
training dataset. (6) Uniqueness represents the ratio of distinct mole-
cules within all generated molecules. (7) Similarity is computed by
comparing the Morgan-2 fingerprints of generated molecules and
reference ligands. (8) Interaction Similarity represents the similarity
of protein-ligand interaction fingerprints. (9) Binding Free Energy is
calculated by the MMGBSA method®. (10) Docking Score is estimated
by the AutoDock Vina** program, which reports three types of scores -
Vina Score, Vina Min, and Vina Dock. Vina Score represents the score of
the directly generated ligand pose. Vina Min computes the score after
local energy minimization, and Vina Dock provides the best possible
score after redocking. (11) Jensen-Shannon (JS) divergence measures
the similarity between the generated and reference distributions of
bond lengths, bond angles, and dihedral angles. (12) RMSD is the root
mean square deviation of heavy atoms between aligned conforma-
tions. (13) QED stands for quantitative estimation of drug-likeness
combining multiple molecular properties. (14) SA signifies the syn-
thetic accessibility that measures the difficulty of synthesizing organic
molecules. (15) LogP is the octanol-water partition coefficient that
assesses a compound’s lipophilicity, and it indicates how well the
compound dissolves in fats compared to water. (16) TPSA is the
abbreviation of topological polar surface area, which predicts the
molecule’s ability to interact with biological membranes and its
overall bioavailability. The JS divergence and RMSD are defined as
follows:

1 1
JS(PIIQ) = EDKL(PHM)Jr EDKL(QHM) (25)

(26)

RMSD (R, R) = min J (izn: IOR) — kin)
i=1

where P and Q are two probability distributions, M (M=1/2(P+ Q)) is a
mixture distribution of Pand Q, n is the number of heavy atoms, ® is an
alignment function that aligns two conformations by rotation and
translation, R and R are generated conformation and optimized/pre-
dicted conformation, respectively.

Baselines

We compare our proposed method DiffGui with the following mole-
cular generation methods: (1) ResGen®®, an autoregressive generative
model built on the principle of parallel multiscale modeling; (2)
PocketFlow®, a structure-based autoregressive framework with che-
mical knowledge explicitly considered; (3) GCDM*, a geometry-
complete diffusion model for 3D molecule generation; (4)
TargetDiff*, an initial attempt to produce target-aware 3D molecules
using the diffusion model; (5) DiffSBDD*, a diffusion-based framework
to generate novel ligands by an inpainting-based sampling approach;
(6) PMDM™, a pocket-aware generative method that incorporates a
dual diffusion strategy and the cross-attention mechanism.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw protein-ligand complex structural data are available in the
public database of PDBbind (https://www.pdbbind-plus.org.cn/) and
CrossDocked (http://bits.csb.pitt.edu/files/crossdock2020/). The PDB
files used in this study are available in the PDB dataset (https://www.
rcsb.org/) under accession code: PDBid [https://www.rcsb.org/
structure/PDBid]. A video of the generation trajectory of a molecule
in the pocket of the WDRS5 protein (WIN site) is also available as Sup-
plementary Video 1. Source data are provided in this paper.

Nature Communications | (2025)16:7928

15


https://www.pdbbind-plus.org.cn/
http://bits.csb.pitt.edu/files/crossdock2020/
https://www.rcsb.org/
https://www.rcsb.org/
https://www.rcsb.org/structure/PDBid
https://www.rcsb.org/structure/PDBid
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63245-0

Code availability
The processed data and source code of this work are publicly available
at GitHub: https://github.com/QiaoyuHu89/DiffGui and Zenodo®.
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