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Named entity recognition (NER) is a task to identify text spans of named entities
from text, and to classify them into predefined types like location (LOC), person
(PER), organization (ORG), etc. It is an essential component in a variety of NLP
applications such as event extraction [4], coreference resolution [9] and relation
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Abstract. Recent advances on Chinese named entity recognition (NER)
are mostly based on the recurrent neural network (RNN). Since RNNs
are limited in parallel processing, some works apply the convolutional
neural network (CNN) to perform NER. However, existing CNN-based
models fail to explicitly distinguish the preceding and subsequent con-
texts, so they are difficult to handle cases that are sensitive to the loca-
tion of the contexts. Moreover, they pay equal attention to the context
within a convolution kernel, while not all the information is useful for
semantic understanding. In this paper, we propose a novel CNN-based
model, Bidirectional Gated Convolutional Neural Network (BiGCNN),
to differentiate the entity-related information between preceding and
subsequent contexts and filter out the convolution information adap-
tively. By incorporating automatic segmentation and glyph informa-
tion, BIGCNN outperforms state-of-the-art models on four Chinese NER
datasets. Additionally, benefiting from the parallelism processing, the
proposed method enjoys higher training and testing efficiency, e.g., 12.04
times faster than RNN-based models, while with better performance.

Introduction

extraction [33]. And there is increasing interest in the field.

Most existing NER systems are based on recurrent neural network (RNN),
especially long-short-term-memory (LSTM) [18,19,21]. But in RNNs, the out-
puts in each step rely on the previous step which hinders the parallel processing
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Xiaoting Shenzhen

il 1 Context related to

Translation: _ _ ¥ Xiaoting (/%)

T~ 71 Context related to

There will be a lottery in a few days, Xiaoting will make a special trip to Shenzhen to send you prizes. i1 Shenzhen (i)

Fig. 1. An example from Weibo dataset where labels of the entities (/N5 pgr and
&Yl Loc) only depend on either preceding or subsequent context.

over an input sequence, so its computational speed is inevitably constrained.
The convolutional neural network (CNN) operates all inputs simultaneously and
thus allows parallelization over sequential inputs, which leads to higher efficiency.
Therefore, some recent works proposed CNN-based approaches as an alternative
to better capture the sequential information. For example, GRN [3] used CNNs
with a gated relation structure and gained considerable improvement on English
NER. The lastest method LR-CNN [11] adopted CNNs with a lexicon rethinking
mechanism and achieved state-of-the-art performance on Chinese NER.

Although recent works adopting CNNs for NER task have achieved great suc-
cess, these methods still face two limitations. First, existing CNN-based models
use one convolution to capture both preceding and subsequent context features
simultaneously and then combined them together through pooling operations,
meaning that the unique information of these two parts cannot be explicitly
distinguished. In many cases, the label of an named entity only depends on
the preceding or the subsequent context. For example, as shown in the Chi-
nese sentence in Fig. 1, /N5 (Xiaoting) is a person, whose meaning can only be
inferred from the the subsequent context “&EF&%E -+ (will make a special trip
to---)”, and it is irrelevant to the previous “s545 JLK -+ (There will be---)”.
Similarly, the label of {73)l] (Shenzhen), LOC, only depends on the preceding con-
text N SEFEE - (Xiaoting will make a special trip to---)” and has little
relation with the subsequent “ R/ 1253 5 (to send you prizes)”. Therefore, to
better capture the direction-sensitive cases with CNNs, it is necessary to take
the bidirectionality into account for CNN structures. Second, current CNN-
based methods lack an effective mechanism to control the context information.
In traditional CNN models, all information within a certain kernel size will be
propagated to the next computation stage. However, not all information is truly
useful for semantic understanding. So it is difficult to select the meaningful fea-
ture based on the plain context. Furthermore, information could easily vanish
through transformation. Existing gated linear unit (GLU) [6] only considers the
output information to handle this issue but neglects to control the input and
other fined-grained features. Hence, a more comprehensive mechanism to filter
out context information becomes a pressing need for the CNN structure.

In this paper, we propose a Bidirectional Gated Convolutional Neural Net-
work (BiIGCNN), for Chinese NER task. To address the first problem, a novel
and effective bidirectional CNN structure is introduced to better differentiate
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the entity-related information between the preceding and subsequent contexts.
Specifically, It employs two independent CNNs to explicitly capture specific fea-
tures from the two parts. In this manner, contexts of different directions can be
modeled separately. To tackle the second problem, we propose a comprehensive
gated convolutional unit (GCU) to purify the context information through mul-
tiple schemes, i.e.,the convolution gate, the update gate and the reset gate. As
a result, the irrelevant information after the convolution update and the useful
inputs are integrated to better represent context features. By incorporating the
proposed bidirectional and gating mechanism, the CNN structure is capable of
extracting the different information of the preceding and subsequent contexts
adaptively and flexibly. Additionally, BIGCNN is completely based on CNN
structure and thus it is much more efficient than RNN based models, which is
quite beneficial to practical applications.

Specifically, we conduct extensive experiments on Chinese NER task. Com-
pared with other languages, Chinese has the following substantial properties.
Firstly, there are no explicit word boundaries for Chinese text. To avoid segmen-
tation errors, many Chinese NER systems are based on characters rather than
perform word-level NER [20,31]. Recent works further assigned words informa-
tion to characters to fully use the word-level semantics [11,32]. In particular,
the proposed model is character-based and further integrates characters with
the automatic segmentation to take advantage of word-level features. Secondly,
Chinese characters are logographic-based and the logographs always convey rich
semantic meanings. For example, Ji] (river), {# (lake), and J% (ocean) all include
the radical y (water). Hereby, Dong et al. [8] proposed to use radical sequences
to model Chinese characters. However, this method ignores the case that com-
pletely different characters may share the same radical sequence. For instance,
three characters [f (tired), & (nerd), and 75 (apricot) can be only split into
two radical sequences, i.e., “I1, K" and “A, [1” . Recently, Glyce [29] collected
various historical scripts and writing styles of characters and use the ensembles
to encode Chinese characters. Accordingly, we also use the glyph information.
But different from Glyce which uses the glyph to pre-train character representa-
tions, we treat it as an additional feature to enhance Chinese structural property.
Moreover, without any manual work, we use an automatic and simple way to
model the glyph feature effectively.

To summarize, the main contributions of this work are:

— We propose a novel and effective bidirectional CNN structure to distinguish
the entity-related information between the preceding and subsequent con-
texts, which is beneficial to direction-sensitive NER cases.

— We introduce a comprehensive gating mechanism for CNN structure through
multiple control schemes, to better filter out irrelevant information and retain
the useful ones.

— Enhanced with segmentation and glyph features, BIGCNN achieves state-of-
the-art performance on four Chinese NER datasets, and accelerates up to
12.04 times over RNN-based models because of the parallelism processing.



BiGCNN 505

wr
-§ O <«— B-lOC «— E-lOC «— O
=
gl
[hs | [had [hs | [he ]
2 Forward CNN 07 *-m Backward CNN
E
g
= — —= =L — — — — —
= [ ] ] ] e G ] [
o _--z= 1 __-Z% RS
| R L
o -7 _---ZZ -=" 1 1 [N STl T
B = = = — e e
3 N 0 0 O 0 R 00 I I I O R
PN N
e Vs i i IR
2
E
g
§ "
;g % B " ] % 4 n
E A special trip To Shenzhen To You

:] Embedding I:l Convolution Unit E Combined Hidden State @ Concat

Fig. 2. Framework of BIGCNN. We take the processing of characters “}5%” and “3JI|” as
an example to illustrate the architecture.

2 Model

In this section, we introduce the overall architecture of BIGCNN in detail. For-
mally, for an input sentence with T characters s = ¢y, ¢s, ..., cr, Where ¢; is the
i-th character. The NER task is to predict a label sequence y = y1,%2,...,yr,
where y; is the entity type of ¢;. Suppose a sequence of characters cf =Ciy..-,Cj

forms a word w, its corresponding segmentation sequence can be formulated as

i _ _ . A
w] = w;,...,w; where w;,...,w; = w,...,w. Take the sequence in Fig.2 as
an example, the characters ¢4 = “J” and ¢; = “¥JI|” compose a word “iF I

(Shenzhen)”, and then it comes to wy = “IFEYI]” and ws = “IFI]” ..

As illustrated in Fig. 2, BIGCNN consists of three modules: the embedding
module, the bidirectional CNN module, and the CRF module. We will elaborate
on each of them in the following subsections.

2.1 Embedding Module

The embedding module focuses on mapping discrete characters into dis-
tributed semantic representations. As shown in Fig. 3a, for an input character
¢;, the output of the embedding module z;, is the concatenation of the character
embedding z¢, the segmentation embedding z%, and the glyph embedding x7 as:

x; = [xf; 2 ]], (1)

where z; € R% with d, being the concatenated embedding size, and ; denotes
the concatenation operation.
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(a) Embedding Module. (b) Gated Convolutional Unit.

Fig. 3. Architectural elements in BIGCNN. (a) The output of the embedding module
is the concatenation of the character embedding, the segmentation embedding and the
glyph embedding. (b) The gated convolutional unit includes the convolution gate, the
update gate and the reset gate.

Character Embedding. Given a character ¢;, the character embedding z¢ is
defined as:
zi = E%(ci), (2)

where E€ is the random-initialized dictionary and be fine-tuned during training.

Segmentation Embedding. Simply using the character embedding ignores
the inherent word information in the sentence. Therefore, we integrate the word
segmentation into the character-level feature. For a word w; corresponding to
the character ¢;, its segmentation embedding 3" is extracted as:

2 = B(w), (3)

where E" is initialized with pre-trained word embedding and be fine-tuned dur-
ing training.

Glyph Embedding. Character and word embedding can model most of the
semantic information. But the embeddings of rare and unknown characters or
words are less reliable. Inspired by [29], we propose a simplified glyph repre-
sentation to better encode Chinese structural property. We generate a 24 x 24
pixel-sized image' for every character according to its glyph morphology. Char-
acters are rendered to binary images via API calls to pygame library?. Defining
I; as the glyph image of the character ¢;, we use a 2D convolution with a 3 x 3

! Empirically, smaller sizes than 24 x 24 lead to blurry glyph images, while larger sizes
are unnecessary.
2 https:/ /www.pygame.org/docs//.
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kernel to extract the glyph-based feature #7, and then perform a max pooling
operation to aggregate the convolution result into the glyph embedding z? as:

&y =conv(I;),

4

zy =max_pooling(z?). @
Compared with the radical embedding in [8], the glyph embedding can uniquely
encode each character based on its logographic property. Our experiments further
verify its effectiveness and superiority over the radical embedding.

2.2 Bidirectional CNN Module

The bidirectional CNN module takes concatenated character-level feature as
input and separately model preceding and subsequent contexts to high-level
features for entity type prediction. We describe each component in detail as
follows.

Bidirectional Structure. We propose a bidirectional structure typically for
the convolutional operation, which leverages a forward CNN and a backward
CNN to exploit the preceding and subsequent contexts, respectively.

For a T-character sentence with embeddings = x1, %2, ..., 2z, which are
derived by Eq. 1, the output of the forward CNN at position ¢ only relies on the
i-th character and its preceding omes, i.e., [;_(x—1)d, Ti—(k—2)d> ---» i), BS:

—
hik = convy ([Ti—(k—1)d, Ti— (k—2)d> -+ Ti])- (5)

Here, m € R% with dj being the hidden size, k is the kernel size and d is
the dilation factor which means each character in the sliding window skips over
d characters in the input sentence. Considering that the semantic dependency
between characters is not limited by a fixed distance, as revealed in [3], we
utilize three different convolutions, each with a kernel size of £ = 1, 2, and 3,
respectively, to extract multi-scaled features.

The backward CNN performs in a similar way, except that its inputs are in
the reverse order, i.e., [;, Zitd, ... x,;+(k_1)d]. For simplicity, we take the forward
CNN as an example in the following procedures to elaborate on the module.

Gated Convolutional Unit. As shown in Fig. 3b, the gated convolutional unit
(GCU) contains three kinds of control schemes, including the convolution gate,
the update gate and the reset gate.

— The convolution gate: Generally, the contexts with different length con-
tribute differently to understanding semantics of a given entity. Hence, it is
necessary to clarify the importance of the convolutional output with a certain
kernel size. For the input embedding z;, the convolution gate corresponding
to kernel size k is calculated as:

—
Jik=0 (W;hi,k +V)iw+ b’;) ) (6)
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where W(f € Rnxdn, qu € R%xdn and bg € R% are learned parameters.
o(+) is the sigmoid function, we define its output as the convolution gate. The
filtered representation of the input x; is the gated combination of multi-kernel

convolutions as:
— —
h = E hi b ® g; 7
7 k=123 i,k g’L,k) ( )

_
where ® denotes the element-wise multiplication. The h;’ is the final combined
convolutional hidden output, and is used to calculate the following update and
reset gates.

— The update gate: The update gate focuses on filtering out the irrelevant
information implied in the combined output above, which is defined as:

mza(waif+uw,+m), (8)

where W,, € R%*dn Y, € R%Xdn and b, € R are trainable parameters.

— The reset gate: As indicted in [5], the input embedding z; is essential for
prevent information decay. Therefore, we defined the reset gate to regulate
the flow of input semantic information as:

N —
ri =0 (thi/ + Vix; + br) ; (9)
which is parameterized by W, € R%*dr V, c R¢¥% and b, € R%.

The final hidden output of the gated convolutional unit is calculated by:
—
hi=hi @ +a;, 7. (10)

-
Similarly, we obtain h; as the output of the backward CNN for the i-th input
character ;. Practically, we stack two convolutional layers of each direction to

— —
enlarge the receptive fields®. Denote hl and hl as the last hidden output of
forward and backward CNN, the final result of the bidirectional CNN module is
the concatenation as:

— —
hi = [hfath]a (11)

which will be mapped into entity type distributions and fed into the CRF module.

2.3 CRF Module

Conditional Random Field (CRF) is a probabilistic method that jointly models
interactions between entity labels, which is incorporated in nearly all state-of-
the-art NER models. Similarly, we utilize a CRF module over the bidirectional
CNN module to calculate loss and perform label decoding.

3 We also evaluated more convolution layers, but found the results comparable while
the computational cost is higher.
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Table 1. Statistics of Datasets.

Dataset Type Train Dev Test
OntoNotes4 | Char 491.9k |200.5k | 208.1k
Sentence | 15.7k |43k [4.3k

MSRA Char 2169.9k | — 172.6k
Sentence | 46.4 k - 4.4%
Weibo Char 73.8k 145k |14.8k

Sentence | 1.4k 0.27k |0.27k
Resume Char 124.1k |13.9k | 15.1k
Sentence | 3.8k 0.46k |0.48k

Loss Function. Suppose that the final output of the bidirectional CNN module
forms a sequence h = hy, ha, ..., hr, where h; corresponds to the hidden state of
the i-th character derived from Eq. 11. Given a label sequence y = y1,v2, - - ., y1,
p(ylh) is defined as the probability of using y as the prediction sequence for the
sentence as follows:

N
[Li2: ¢i(yi-1.9i h)
~ .
Zy/ey(h) Hi:l ¢’L (yg_lv y:, h)
Here, Y(h) denotes the set of all possible label sequences. ¢;(y;—1,yi,h) =
exp(Wigphi + blgp 7)), where Werp € R¥ X4 and berp € R**% with d,
being the label vocabulary size. Wl is the column corresponding to label y;,
and blizp 7' is the transition probability from label y;_1 to y;.
During training, the loss function £ is defined as the negative log-likelihood:

L=~ logp(y|h). (13)

p(ylh) =

(12)

Label Decoding. During inference, we predict the label sequence y* with the
maximal likelihood which can be efficiently settled by the Viterbi algorithm:

y" = argmaxycy(n) p(ylh). (14)

3 Experiments

To demonstrate the effectiveness of the bidirectional gated CNN structure, we
evaluate BIGCNN over four widely-used Chinese NER datasets, and compare it
with existing state-of-the-art methods.

3.1 Datasets

We conduct extensive experiments on four datasets including OntoNotes4 [28],
MSRA [16], Weibo [22] and Resume [32]. Table 1 shows the statistics of the four
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datasets. Gold-standard segmentation is provided for OntoNotes4d and MSRA
training set. Since the golden segmentation is not available for Weibo and
Resume datasets as well as the test set of MSRA, we adopt the automatic neu-
ral segmentor as [32] to construct the word segmentation for each sentence. The
data splits and tagging scheme(i.e., BIOES) follow those in [32].

3.2 Settings

For evaluation, standard precision (P), recall (R) and Fl-score (F1) are used as
metrics in our experiments. Other settings of our model are described as follows:

Embeddings. The dimension of character embedding is 80 and the embedding
matrix is randomly initialized with kaiming uniform [13]. We use the word seg-
mentation embedding following paper [34], which is trained on Chinese Baidu
encyclopedia [17]. For the out-of-vocabulary words, we initialize them with a
uniform distribution as in [21]. The dimension of glyph embeddings is set to 20.

Weight Initialization. We initialize all weights of convolution operations
(Eq.4 and Eq.5) in the same way as in [10], while other weights are initial-
ized with kaiming uniform [13] and bias with zero.

Network Structure. The output channel of bidirectional convolution (Eq.5)
is set as 400. The first layer of the bidirectional CNN module uses a dilation
factor d = 1 and the second layer uses d = 2.

Training. We use stochastic gradient descent (SGD) with momentum as the
optimizer, where the batch size is 10 and the momentum is 0.9. The learning rate
is initialized as ng = 0.02. At the end of each epoch, we update the learning rate
with ny = %, where p = 0.05 is the decay rate and ¢ refers to the epoch index.
Dropout layers are added upon both the inputs and outputs of the bidirectional
CNN module, with a dropout rate of 0.5. We train our model for 100 epochs and
report the average P/R/F1 results of 5 runs for each experiment.

3.3 Experimental Results

Table 2 shows the performance of BIGCNN. The first block of sub-tables lists the
recent advances for Chinese NER. Among them, LR-CNN [11] is the latest Chi-
nese NER model based on CNN. All others employ RNN structure as backbones.
Note that WC-LSTM [19] adopts four strategies to encode word information,
we listed their best results for better comparison. The second block lists three
baselines with the same embedding module as BIGCNN (Eq.1). Specifically,
BiLSTM [14] is the base of most RNN-based varieties. GRN [3] is the recent
CNN-based model for English NER. Transformer [27] constructs character rep-
resentations through attention mechanism and enjoys the parallelism property
similar to CNN. All of these models adopt CRF to perform label prediction.
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Table 2. Performance comparisons on the four datasets. * denotes models based on
RNN structure.  denotes models based on CNN structure. The “NE” and “NM” denote
F1-scores for named entities and nominal entities, following [22].

Model OntoNotes4 Resume

P(%) |[R(%) |[F1(%) |P(%) |R(%) |F1(%)
CAN-NER [34]" 73.63 |70.82 |72.20 |95.05 |94.82 |94.94
LatticeLSTM [32]* |76.35 | 71.56 | 73.88 |94.81 |94.11 94.46
WC-LSTM [19]* 76.09 |72.85 |74.43 |95.27 |95.15 95.21

LR-CNN [11]f 76.40 |72.60 |74.45 |95.37 |94.84 |95.11
BiLSTM* 75.94 |70.42 | 73.03 |93.69 |94.76 | 94.23
GRN [3]f 75.81 |70.97 |73.33 |93.92 |94.89 |94.40

Transformer [27] 73.25 | 71.39 |72.31 |93.61 |92.95 93.27
BiGCNN w/o glyph | 76.32 | 73.66 | 74.97 | 94.81 95.50 | 95.15

BiGCNN 76.86 | 74.10 | 75.46 | 94.84 |95.62 |95.23
Model MSRA Weibo

P(%) |[R(%) F1(%) | NE(%) NM(%) | F1(%)
Cao et al. [2]* 91.73 |1 89.58 |90.64 |54.34 |57.35 58.70

CAN-NER [34]" 93.53 92.42 [92.97 1 55.38 |62.98 |59.31
LatticeLSTM [32]* |93.57 |92.79 |93.18 |53.04 |62.25 |58.79
WC-LSTM [19]* 94.58 [92.91 |93.74 |52.55 |67.41 |59.84

LR-CNN [11]* 94.50 [92.93 93.71 |57.14 |66.67 |59.92
BiLSTM* 93.63 [92.26 1 92.94 |52.56 |63.44 |58.25
GRN [3]f 93.37 [92.00 |92.68 |53.08 |63.53 |58.90

Transformer [27] 92.75 |91.18 91.96 |52.35 |62.56 |57.20
BiGCNN w/o glyph | 94.66 | 92.93 | 93.78 | 57.42 | 66.82 60.27
BiGCNN 94.63 | 93.14 | 93.88 | 57.60 |67.56 | 61.54

Comparisons with RNN-based Models. As shown in Table2, without
external labeled features, BIGCNN achieves the state-of-the-art performance on
four datasets compared with all the RNN-based models. Even removing the glyph
embedding, BiIGCNN still outperforms the baselines on most of the datasets and
is strongly competitive with the best result on Resume, despite the performance
drop slightly. This well verifies the feasibility and effectiveness of replacing RNN
with our well-designed CNN on Chinese NER task. Meanwhile, the extended
glyph embedding is helpful for further improvement.

Comparisons with CNN and Transformer Based Models. BiGCNN
outperforms the best CNN-based model LR-CNN [11] on four datasets. Espe-
cially on OntoNotes4 and Weibo, BiIGCNN consistently increasing the F1 score
by 1.01% and 1.62%. Without the glyph embedding, the improvement is also
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Fig. 4. Training and testing speedups gained by BiGCNN over baseline models.

considerable. Besides, compared with the latest CNN-based model for English
NER, GRN [3], BIGCNN has an overall significant performance boost. Both
LR-CNN and GRN are based on traditional convolutions. Hence, such improve-
ments well demonstrate that the bidirectionality is beneficial for common CNN
structures.

Additionally, the Transformer [27] also performs inferior to BIGCNN on the
four datasets. We consider that the Transformer focuses on learning distant
dependencies within a sequence. While for NER, the long-term dependency is not
absolutely necessary [1]. Therefore, with limited data, extracting local features
using CNNs is more helpful to improve NER performance than the Transformer.

3.4 Efficiency

In this section, we further evaluate the speedups gained by BiGCNN over latest
state-of-the-art Chinese NER models and the basic BiLSTM model [21]. All
models are trained for 10 epochs in total with the same batch size on the same
physical machine and use CRF for label decoding. After each training epoch, we
evaluate the learned model on the test set. We log the training and testing time
costs for each epoch and calculate the average. Accordingly, the speedups are
obtained for efficiency comparisons.

Speedups over State-of-the-art Chinese NER Models. LatticeLSTM
[32], WC-LSTM [19] and LR-CNN [11] are the recent advanced models for Chi-
nese NER. We run their publicly available implementations. As shown in Fig. 4,
BiGCNN is much faster than the three baselines both in training and testing.
Particularly on Resume, the training-time speedup is 12.04 times over Latticel-
STM. Despite that LR-CNN is also CNN-based, BiIGCNN still gains noticeable
speedups (an average of 1.86 and 3.53 times faster than LR-CNN for training
and test). The reason may be that LR-CNN needs to stack multiple layers to
extract multi-gram lexicon features, and readjust the weight of each layer after
the convolutional operation, which inevitably limits efficiency. More importantly,
BiGCNN does NOT sacrifice performance for speedup, meaning that it is more
effective and efficient than the compared models.



BiGCNN 513

Table 3. Experimental comparisons on the four datasets for enhancing BIGCNN with
fine-tuned BERT. The results of BERT are listed following [29].

Model OntoNotes4 Resume

P(%) |[R(%) |F1(%) | P(%) |R(%) |F1(%)
BERT 78.01 [80.35 |79.16 |96.12 |9545 |95.78
Glyce 82.06 |68.74 |74.81 |95.72 |95.63 |95.67
BiGCNN+BERT | 79.63 | 80.41 | 80.02 | 95.42 | 96.76 | 96.08
Model MSRA Weibo

P(%) R(%) F1(%) | NE(%) NM(%) | F1(%)
BERT 94.97 |94.62 |94.80 |67.12 |66.88 |67.33
Glyce 93.86 193.92 193.89 53.69 |55.30 54.32
BiGCNN+BERT | 95.51 | 95.80 | 95.65 | 67.50 |73.25 |68.91

Table 4. Ablation study results (F1 score) on the four datasets.

Model OntoNotes4 | MSRA | Weibo | Resume
BiGCNN 75.46 93.88 | 61.54 95.23
BiGCNN w/o direction 73.85 92.70 |59.02 |94.06
BiGCNN w/o GCU 74.21 93.06 |59.41 |94.39
BiGCNN replace GCN w/GLU | 74.83 93.36 |60.34 | 95.02
BiGCNN w/o glyph 74.97 93.78 160.27 |95.15
BiGCNN replace glyph w/radical | 74.40 93.23 |60.12 |94.90

Speedups over BiLSTM Model. As mentioned before, BILSTM is the base
of many RNN-based models with more complicated structures. So taking Bil-
STM by itself into comparison, which reflects the lower-bound of speedups that
BiGCNN can achieve. Specifically, we replace the bidirectional CNN module of
BiGCNN with a BiLSTM module, and keep other modules and hyper-parameters
the same. As shown in Fig.4, BIGCNN gains speedups of 1.06 and 1.08 on the
largest dataset MSRA during training and testing, respectively. Since the exper-
iment is derived in an end-to-end manner, the time costs for calculating the
embedding and CRF modules are also non-negligible. Therefore, such speedups
are still noticeable. Moreover, the efficiency is more meaningful for large-scale
NER applications, which can substantially improve overall system throughput.

3.5 Enhancing BiGCNN with Pre-trained Language Model

In this section, we verify the pre-trained language model (LM) can enhance the
performance of BIGCNN. BERT [7] is taken as a representative as it is a powerful
and most influential pre-trained LM currently. Glyce [29] is a pre-trained Chinese
character representations and is used as a strong baseline.
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We concatenate the Chinese BERT feature with our character embeddings
and feed them into the bidirectional CNN module. The parameters of BERT are
fine-tuned during training. As shown in Table 3, the BERT has already achieved
a remarkable performance on the four datasets. When combining BIGCNN with
BERT, the P/R/F1 scores on the four datasets improve significantly, and outper-
form Glyce. Especially, the performance increases obviously by 14.59% on Weibo
dataset. All these results demonstrate that BERT can enhance the performance
of BiIGCNN and further verify the effectiveness of BIGCNN.

3.6 Detailed Analysis
Ablation Study. We consider the following variant models:

1. BiGCNN w/o direction, which adopts traditional convolution layers with uni-
directional kernels. To guarantee the traditional CNN to have the same cov-
erage as the bidirectional ones, we apply three different convolutions with
kernel sizes as 1, 3, 5, respectively;

2. BiGCNN w/o GCU, which removes the convolution gate, the update gate,
and the reset gate (Eq. 6-9);

3. BiGCNN replace GCN w/ GLU. The gated convolutional unit (GCU) is
replaced with the gated linear unit (GLU) in [6]. For a fair comparison, we
use multiple convolutions with kernel sizes the same as BIGCNN for GLU,;

4. BiGCNN replace glyph w/ radical. The glyph embedding is replaced with the
radical embedding [8] to verify its superiority. We split character ¢; into a
radical sequence* and feed it to an LSTM layer, where the last hidden state
is referred as the radical embedding z7. Then z7 is replaced with 27 in Eq. 1.

Except for the above changes in structure, other modules and experimental set-
tings are kept the same as BIGCNN. The CRF module is also included in all
these variants. Table 4 presents the comparison results, which suggests that:

— Bidirectionality plays a crucial role in modeling context information. The
model without direction only uses a single CNN to extract both preceding
and subsequent context simultaneously, and the degradation of performance
is substantial on the four datasets (drops 1.61% on OntoNotes4). The result
verifies that distinguishing contexts can be helpful for better performance.

— The proposed GCU is beneficial to the CNN-based structure. Regarding the
model without the GCU, its performance drops significantly on the four
datasets, which indicates that filtering out irrelevant information and retain-
ing useful inputs is important to improve performance. Meanwhile, the result
of BiGCNN replace GCU w/ GLU is lower than BiGCNN, indicating the
superiority of GCU over GLU and the necessity of controlling the convolu-
tion input for the gating mechanism.

— Glyph embedding can further lead to a performance boost. As mentioned in
Sect. 3.3, without the glyph embedding, the performance of BIGCNN drops

4 https://github.com/kfcd /chaizi.
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Table 5. An example in OntoNotes4 test set. Characters with blue and red text high-
light the correct and incorrect labeled entities, respectively.

X =i RSB T R E R R A AR K 3R
The plan was strongly supported by Wellcome UK.
Segment ixX/— /1T RI/BE]/ T /5&H B/ AF] [/ KT] | FF
BiGCNN = A M EET [%% B-ORG] [H I-ORG] [& I-ORG] [% I-ORG]
[% I-ORG] [A] E-ORG] K K 51 3£ #F (V)
X — it X715 2] T [3% B-GPE] [H E-GPE] [f B-ORG] [ I-ORG]
[/ I-ORG] [A] I-ORG] K K 51 % ¥ (%)
_ eate X — iF X715 8] T [%& B-GPE] [H E-GPE] [ O] [ O] [A O] [A]
g O] 1 K 11 3 £ (%)

Sentence

- direction

slightly. In addition, when replacing the glyph feature with the radical feature,
there is still a performance gap with BIGCNN. We attribute it to that, split-
ting characters into radical sequences can not only lead to different characters
sharing the same sequence (Sect. 1) but also the loss of structural information.
Therefore, it may not be as effective as the glyph embedding.

Case Study. Table 5 shows an example in OntoNotes4 test set. In this case, the
correct label of “¥#i[F (the UK)”, i.e., ORG, should be inferred from the subse-
quent context “giFE /AT (Wellcome)”. Otherwise, it could easily be mislabeled
as Geo-Political Entities (GPE). Benefiting from the bidirectionality, BIGCNN
can concentrate on the subsequent context, and predict the label correctly. The
model without directional structures fuses the preceding/subsequent context and
may somehow confuse the important information, and thus result in incorrect
predictions. Additionally, the model without gating mechanism fails to distill
the useful context clues, which also affects the recognition result.

4 Related Work

General NER Systems. Traditional NER systems are mostly based on sta-
tistical models with hand-crafted features [25]. To alleviate the heavy feature-
engineering work, later studies applied recurrent neural networks to automat-
ically extract features. For example, the BiLSTM is first introduced in [14]
to capture word-level information. Paper [15,21] further integrated character-
level features into the BiLSTM model. However, these methods only focused
on learning context-independent representations. To enhance the generalization
of learned features, some works combined the pre-trained language model with
the RNN-based NER systems and gained considerable improvement [24]. More
recently, BERT [7] is designed to pre-train bidirectional transformers and achieve
state-of-the-art results on NER. Specifically, we also enhance BIGCNN with the
pre-trained BERT and obtain further performance boost.
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Chinese NER Systems. Compared with general NER, recognizing Chinese
entities is more challenging as there are no word boundaries in Chinese text.
Previous works proposed to preform segmentation first and then conduct word-
level NER [12,23]. These methods are vulnerable to segmentation errors and
thus later works are mostly based on character-level features. In particular, a
position-sensitive model [20] is presented to train character representations. The
character-level BiLSTM is used in [30] to extract context features. However,
these models lack necessary word-level features. Recent studies introduced Lat-
ticeLSTM [32] and WC-LSTM [19] to integrated potential words information
into character-level features, and gained greatly improvements. In addition, con-
sidering the typical structure of Chinese characters, radical information and his-
torical glyph scripts/styles are further leveraged in [8,29]. Particularly, Glyce [29]
collected extensive glyphs to pre-train character representations. We serve the
glyph as a simple feature to better encode characters without any pre-training
and manual work, which is totally different from Glyce.

CNN-based Networks for NER. As RNNs are limited in parallel process-
ing, some works utilized CNNs to improve the computational efficiency for NER.
ID-CNN [26] stacked layers of dilated convolutions to capture long-term context
features. GRN [3] introduced a gated relation network to model the local contexts
and the global relations in a sentence. LR-CNN [11] presented lexicon rethink-
ing CNN to integrate lexicons and tackle conflicts between potential words. All
of these methods are based on traditional CNNs, which use one convolution to
model both preceding and subsequent context information simultaneously. Dif-
ferently, we propose a novel bidirectional CNN structure using two independent
convolutions to capture these two different contexts separately, which can better
distinguish the entity-related information.

5 Conclusion

In this paper, we propose a bidirectional gated convolutional neural network
(BiGCNN) for Chinese NER, which employs two independent CNNs to better
differentiate the entity-related information between preceding and subsequent
contexts. We also present an effective gated convolutional unit to control context
information, and introduce additional glyph feature to further improve the rep-
resentation of Chinese characters. Experimental results on four datasets demon-
strate that BIGCNN outperforms both RNN-based and CNN-based models while
enjoying a remarkable efficiency acceleration both in training and testing.
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